Nicotine poisoning

Last updated
Nicotine poisoning
Nicotine.svg
Nicotine
Specialty Toxicology, emergency medicine

Nicotine poisoning describes the symptoms of the toxic effects of nicotine following ingestion, inhalation, or skin contact. Nicotine poisoning can potentially be deadly, though serious or fatal overdoses are rare. [1] Historically, most cases of nicotine poisoning have been the result of use of nicotine as an insecticide. [2] [3] More recent cases of poisoning typically appear to be in the form of Green Tobacco Sickness, or due to unintended ingestion of tobacco or tobacco products or consumption of nicotine-containing plants. [4] [5] [6]

Contents

Standard textbooks, databases, and safety sheets consistently state that the lethal dose of nicotine for adults is 60 mg or less (30–60 mg), but there is overwhelming data indicating that more than 500 mg of oral nicotine is required to kill an adult. [7]

Children may become ill following ingestion of one cigarette; [8] ingestion of more than this may cause a child to become severely ill. [5] [9] The nicotine in the e-liquid of an electronic cigarette can be hazardous to infants and children, through accidental ingestion or skin contact. [10] In some cases children have become poisoned by topical medicinal creams which contain nicotine. [11]

People who harvest or cultivate tobacco may experience Green Tobacco Sickness (GTS), a type of nicotine poisoning caused by skin contact with wet tobacco leaves. This occurs most commonly in young, inexperienced tobacco harvesters who do not consume tobacco. [4] [12]

Signs and symptoms

Symptoms of nicotine poisoning related to e-cigarette calls to US poison control centers Symptoms of nicotine poisoning.png
Symptoms of nicotine poisoning related to e-cigarette calls to US poison control centers

Nicotine poisoning tends to produce symptoms that follow a biphasic pattern. The initial symptoms are mainly due to stimulatory effects and include nausea and vomiting, excessive salivation, abdominal pain, pallor, sweating, hypertension, tachycardia, ataxia, tremor, headache, dizziness, muscle fasciculations, and seizures. [4] After the initial stimulatory phase, a later period of depressor effects can occur and may include symptoms of hypotension and bradycardia, central nervous system depression, coma, muscular weakness and/or paralysis, with difficulty breathing or respiratory failure. [1] [4] [14]

From September 1, 2010 to December 31, 2014, there were at least 21,106 traditional cigarette calls to US poison control centers. [15] During the same period, the ten most frequent adverse effects to traditional cigarettes reported to US poison control centers were vomiting (80.0%), nausea (9.2%), drowsiness (7.8%), cough (7.2%), agitation (6.6%), pallor (3.0%), tachycardia (2.5%), diaphoresis (1.5%), dizziness (1.5%), and diarrhea (1.4%). [15] 95% of traditional cigarette calls were related to children 5 years old or less. [15] Most of the traditional cigarette calls were a minor effect. [15]

Calls to US poison control centers related to e-cigarette exposures involved inhalations, eye exposures, skin exposures, and ingestion, in both adults and young children. [16] Minor, moderate, and serious adverse effects involved adults and young children. [15] Minor effects correlated with e-cigarette liquid poisoning were tachycardia, tremor, chest pain and hypertension. [17] More serious effects were bradycardia, hypotension, nausea, respiratory paralysis, atrial fibrillation and dyspnea. [17] The exact correlation is not fully known between these effects and e-cigarettes. [17] 58% of e-cigarette calls to US poison control centers were related to children 5 years old or less. [15] E-cigarette calls had a greater chance to report an adverse effect and a greater chance to report a moderate or major adverse effect than traditional cigarette calls. [15] Most of the e-cigarette calls were a minor effect. [15]

From September 1, 2010 to December 31, 2014, there were at least 5,970 e-cigarette calls to US poison control centers. [15] During the same period, the ten most frequent adverse effects to e-cigarettes and e-liquid reported to US poison control centers were vomiting (40.4%), eye irritation or pain (20.3%), nausea (16.8%), red eye or conjunctivitis (10.5%), dizziness (7.5%), tachycardia (7.1%), drowsiness (7.1%), agitation (6.3%), headache (4.8%), and cough (4.5%). [15]

E-cigarette exposure cases in the US National Poison Data System increased greatly between 2010 and 2014, peaking at 3,742 in 2014, fell in 2015 though 2017, and then between 2017 and 2018 e-cigarette exposure cases increased from 2,320 to 2,901. [18] The majority of cases (65%) were in children under age five and 15% were in ages 5–24. [18] Approximately 0.1% of cases developed life-threatening symptoms. [18]

Toxicology

The LD50 of nicotine is 50 mg/kg for rats and 3 mg/kg for mice. 0.5–1.0 mg/kg can be a lethal dosage for adult humans, and 0.1 mg/kg for children. [19] [20] However the widely used human LD50 estimate of 0.5–1.0 mg/kg was questioned in a 2013 review, in light of several documented cases of humans surviving much higher doses; the 2013 review suggests that the lower limit causing fatal outcomes is 500–1000 mg of ingested nicotine, corresponding to 6.5–13 mg/kg orally. [7] An accidental ingestion of only 6 mg may be lethal to children. [21]

It is unlikely that a person would overdose on nicotine through smoking alone. The US Food and Drug Administration (FDA) stated in 2013: "There are no significant safety concerns associated with using more than one [over the counter] OTC [nicotine replacement therapy] NRT at the same time, or using an OTC NRT at the same time as another nicotine-containing product—including a cigarette." [22] [23] [24] Ingestion of nicotine pharmaceuticals, tobacco products, or nicotine containing plants may also lead to poisoning. [4] [5] [6] Smoking excessive amounts of tobacco has also led to poisoning; a case was reported where two brothers smoked 17 and 18 pipes of tobacco in succession and were both fatally poisoned. [2] Spilling an extremely high concentration of nicotine onto the skin can result in intoxication or even death since nicotine readily passes into the bloodstream following skin contact. [25] [26]

The recent rise in the use of electronic cigarettes, many forms of which are designed to be refilled with nicotine-containing "e-liquid" supplied in small plastic bottles, has renewed interest in nicotine overdoses, especially the possibility of young children ingesting the liquids. [27] A 2015 Public Health England report noted an "unconfirmed newspaper report of a fatal poisoning of a two-year old child" and two published case reports of children of similar age who had recovered after ingesting e-liquid and vomiting. [27] They also noted case reports of suicides by nicotine, where adults drank liquid containing up to 1,500 mg of nicotine. [27] They recovered (helped by vomiting), but an ingestion apparently of about 10,000 mg was fatal, as was an injection. [27] They commented that "Serious nicotine poisoning seems normally prevented by the fact that relatively low doses of nicotine cause nausea and vomiting, which stops users from further intake." [27] Four adults died in the US and Europe, after intentionally ingesting liquid. [28] Two children, one in the US in 2014 and another in Israel in 2013, died after ingesting liquid nicotine. [29]

The discrepancy between the historically stated 60-mg dose and published cases of nicotine intoxication has been noted previously (Matsushima et al. 1995; Metzler et al. 2005). Nonetheless, this value is still widely accepted over the 500 mg figure as the basis for safety regulations of tobacco and other nicotine-containing products (such as the EU wide TPD, set at a maximum of 20 mg/ml).

Pathophysiology

The symptoms of nicotine poisoning are caused by effects at nicotinic cholinergic receptors. Nicotine is an agonist at nicotinic acetylcholine receptor which are present in the central and autonomic nervous systems, and the neuromuscular junction. At low doses nicotine causes stimulatory effects on these receptors, however, higher doses or more sustained exposures can cause inhibitory effects leading to neuromuscular blockade. [4] [30]

It is sometimes reported that people poisoned by organophosphate insecticides experience the same symptoms as nicotine poisoning. Organophosphates inhibit an enzyme called acetylcholinesterase, causing a buildup of acetylcholine, excessive stimulation of all types of cholinergic neurons, and a wide range of symptoms. Nicotine is specific for nicotinic cholinergic receptors only and has some, but not all of the symptoms of organophosphate poisoning.

Diagnosis

Increased nicotine or cotinine (the nicotine metabolite) is detected in urine or blood, or serum nicotine concentrations increase.

Treatment

The initial treatment of nicotine poisoning may include the administration of activated charcoal to try to reduce gastrointestinal absorption. Treatment is mainly supportive and further care can include control of seizures with the administration of a benzodiazepine, intravenous fluids for hypotension, and administration of atropine for bradycardia. Respiratory failure may necessitate respiratory support with rapid sequence induction and mechanical ventilation. Hemodialysis, hemoperfusion or other extracorporeal techniques do not remove nicotine from the blood and are therefore not useful in enhancing elimination. [4] Acidifying the urine could theoretically enhance nicotine excretion, [31] although this is not recommended as it may cause complications of metabolic acidosis. [4]

Prognosis

The prognosis is typically good when medical care is provided and patients adequately treated are unlikely to have any long-term sequelae. However, severely affected patients with prolonged seizures or respiratory failure may have ongoing impairments secondary to the hypoxia. [4] [32] It has been stated that if a patient survives nicotine poisoning during the first 4 hours, they usually recover completely. [14] At least at "normal" levels, as nicotine in the human body is broken down, it has an approximate biological half-life of 1–2 hours. Cotinine is an active metabolite of nicotine that remains in the blood for 18–20 hours, making it easier to analyze due to its longer half-life. [33]

See also

Related Research Articles

<span class="mw-page-title-main">Nicotine</span> Chemical stimulant produced by some plants

Nicotine is a naturally produced alkaloid in the nightshade family of plants and is widely used recreationally as a stimulant and anxiolytic. As a pharmaceutical drug, it is used for smoking cessation to relieve withdrawal symptoms. Nicotine acts as a receptor agonist at most nicotinic acetylcholine receptors (nAChRs), except at two nicotinic receptor subunits where it acts as a receptor antagonist.

<span class="mw-page-title-main">Strychnine</span> Poisonous substance used as pesticide

Strychnine is a highly toxic, colorless, bitter, crystalline alkaloid used as a pesticide, particularly for killing small vertebrates such as birds and rodents. Strychnine, when inhaled, swallowed, or absorbed through the eyes or mouth, causes poisoning which results in muscular convulsions and eventually death through asphyxia. While it is no longer used medicinally, it was used historically in small doses to strengthen muscle contractions, such as a heart and bowel stimulant and performance-enhancing drug. The most common source is from the seeds of the Strychnos nux-vomica tree.

Iron poisoning typically occurs from ingestion of excess iron that results in acute toxicity. Mild symptoms which occur within hours include vomiting, diarrhea, abdominal pain, and drowsiness. In more severe cases, symptoms can include tachypnea, low blood pressure, seizures, or coma. If left untreated, iron poisoning can lead to multi-organ failure resulting in permanent organ damage or death.

<span class="mw-page-title-main">Chlorfenvinphos</span> Chemical compound

Chlorfenvinphos is an organophosphorus compound that was widely used as an insecticide and an acaricide. The molecule itself can be described as an enol ester derived from dichloroacetophenone and diethylphosphonic acid. Chlorfenvinphos has been included in many products since its first use in 1963. However, because of its toxic effect as a cholinesterase inhibitor it has been banned in several countries, including the United States and the European Union. Its use in the United States was cancelled in 1991.

<span class="mw-page-title-main">Tetryzoline</span> Chemical compound

Tetryzoline is a drug used in some over-the-counter eye drops and nasal sprays. Tetryzoline was patented in 1954, and came into medical use in 1959.

<span class="mw-page-title-main">Nicotine replacement therapy</span> Treatment for tobacco use disorder

Nicotine replacement therapy (NRT) is a medically approved way to treat people with tobacco use disorder by taking nicotine through means other than tobacco. It is used to help with quitting smoking or stopping chewing tobacco. It increases the chance of quitting tobacco smoking by about 55%. Often it is used along with other behavioral techniques. NRT has also been used to treat ulcerative colitis. Types of NRT include the adhesive patch, chewing gum, lozenges, nose spray, and inhaler. The use of multiple types of NRT at a time may increase effectiveness.

Nicotine gum is a chewing gum containing the active ingredient nicotine polacrilex. It is a type of nicotine replacement therapy (NRT) used alone or in combination with other pharmacotherapy for smoking cessation and for quitting smokeless tobacco.

<i>Cicuta</i> Genus of plants

Cicuta, commonly known as water hemlock, is a genus of four species of highly poisonous plants in the family Apiaceae. They are perennial herbaceous plants which grow up to 2.5 meters (8 ft) tall, having distinctive small green or white flowers arranged in an umbrella shape (umbel). Plants in this genus may also be referred to as cowbane or poison parsnip. Cicuta is native to temperate regions of the Northern Hemisphere, mainly North America and Europe, typically growing in wet meadows, along streambanks and other wet and marshy areas. These plants bear a close resemblance to other members in the family Apiaceae and may be confused with a number of edible or poisonous plants. The common name hemlock may also be confused with poison hemlock, or with the Hemlock tree.

<span class="mw-page-title-main">Abrin</span> Chemical compound

Abrin is an extremely toxic toxalbumin found in the seeds of the rosary pea, Abrus precatorius. It has a median lethal dose of 0.7 micrograms per kilogram of body mass when given to mice intravenously. The median toxic dose for humans ranges from 10 to 1000 micrograms per kilogram when ingested and is 3.3 micrograms per kilogram when inhaled.

<i>N</i>-Nitrosonornicotine Chemical compound

N-Nitrosonornicotine (NNN) is a tobacco-specific nitrosamine produced during the curing and processing of tobacco.

<span class="mw-page-title-main">Electronic cigarette</span> Device that vaporizes a liquid nicotine solution for inhalation

An electronic cigarette (e-cigarette) or vape is a device that simulates tobacco smoking. It consists of an atomizer, a power source such as a battery, and a container such as a cartridge or tank filled with liquid. Instead of smoke, the user inhales vapor. As such, using an e-cigarette is often called "vaping". The atomizer is a heating element that vaporizes a liquid solution called e-liquid, which quickly cools into an aerosol of tiny droplets, vapor and air. E-cigarettes are activated by taking a puff or pressing a button. Some look like traditional cigarettes, and most kinds are reusable. The vapor mainly comprises propylene glycol and/or glycerin, usually with nicotine and flavoring. Its exact composition varies, and depends on several things including user behavior.

Green Tobacco Sickness (GTS) is a type of nicotine poisoning caused by the transdermal absorption of nicotine from the surface of wet tobacco plants. Tobacco harvesters, whose clothing becomes saturated from tobacco wet with rain or morning dew, are at high risk of developing GTS. Workers can avoid getting this sickness by waiting to harvest until the tobacco leaves are dry, or by wearing a rain suit. Wet clothing that has come in contact with tobacco leaves should be removed immediately and the skin should be washed with warm soapy water.

<span class="mw-page-title-main">Paracetamol poisoning</span> Toxicity due to paracetamol overdose

Paracetamol poisoning, also known as acetaminophen poisoning, is caused by excessive use of the medication paracetamol (acetaminophen). Most people have few or non-specific symptoms in the first 24 hours following overdose. These symptoms include feeling tired, abdominal pain, or nausea. This is typically followed by absence of symptoms for a couple of days, after which yellowish skin, blood clotting problems, and confusion occurs as a result of liver failure. Additional complications may include kidney failure, pancreatitis, low blood sugar, and lactic acidosis. If death does not occur, people tend to recover fully over a couple of weeks. Without treatment, death from toxicity occurs 4 to 18 days later.

<span class="mw-page-title-main">Tricyclic antidepressant overdose</span> Medical condition

Tricyclic antidepressant overdose is poisoning caused by excessive medication of the tricyclic antidepressant (TCA) type. Symptoms may include elevated body temperature, blurred vision, dilated pupils, sleepiness, confusion, seizures, rapid heart rate, and cardiac arrest. If symptoms have not occurred within six hours of exposure they are unlikely to occur.

<span class="mw-page-title-main">Salicylate poisoning</span> Medical condition

Salicylate poisoning, also known as aspirin poisoning, is the acute or chronic poisoning with a salicylate such as aspirin. The classic symptoms are ringing in the ears, nausea, abdominal pain, and a fast breathing rate. Early on, these may be subtle, while larger doses may result in fever. Complications can include swelling of the brain or lungs, seizures, low blood sugar, or cardiac arrest.

<span class="mw-page-title-main">Ethoprophos</span> Chemical compound

Ethoprophos (or ethoprop) is an organophosphate ester with the formula C8H19O2PS2. It is a clear yellow to colourless liquid that has a characteristic mercaptan-like odour. It is used as an insecticide and nematicide and it is an acetylcholinesterase inhibitor.

The use of electronic cigarettes (vaping) carries health risks. The risk depends on the fluid and varies according to design and user behavior. In the United Kingdom, vaping is considered by some to be around 95% less harmful than tobacco after a controversial landmark review by Public Health England.

<span class="mw-page-title-main">Construction of electronic cigarettes</span> Engineering and chemistry of e-cigarettes

An electronic cigarette is a handheld battery-powered vaporizer that simulates smoking, but without tobacco combustion. E-cigarette components include a mouthpiece, a cartridge, a heating element/atomizer, a microprocessor, a battery, and some of them have an LED light on the end. An atomizer consists of a small heating element, or coil, that vaporizes e-liquid and a wicking material that draws liquid onto the coil. When the user inhales a flow sensor activates the heating element that atomizes the liquid solution; most devices are manually activated by a push-button. The e-liquid reaches a temperature of roughly 100–250 °C (212–482 °F) within a chamber to create an aerosolized vapor. The user inhales an aerosol, which is commonly but inaccurately called vapor, rather than cigarette smoke. Vaping is different from smoking, but there are some similarities, including the hand-to-mouth action of smoking and an aerosol that looks like cigarette smoke. The aerosol provides a flavor and feel similar to tobacco smoking. There is a learning curve to use e-cigarettes properly. E-cigarettes are cigarette-shaped, and there are many other variations. E-cigarettes that resemble pens or USB memory sticks are also sold that may be used unobtrusively.

<span class="mw-page-title-main">Composition of electronic cigarette aerosol</span>

The chemical composition of the electronic cigarette aerosol varies across and within manufacturers. Limited data exists regarding their chemistry. However, researchers at Johns Hopkins University analyzed the vape clouds of popular brands such as Juul and Vuse, and found "nearly 2,000 chemicals, the vast majority of which are unidentified."

Exposure to nicotine, from conventional or electronic cigarettes during adolescence can impair the developing human brain. E-cigarette use is recognized as a substantial threat to adolescent behavioral health. The use of tobacco products, no matter what type, is almost always started and established during adolescence when the developing brain is most vulnerable to nicotine addiction. Young people's brains build synapses faster than adult brains. Because addiction is a form of learning, adolescents can get addicted more easily than adults. The nicotine in e-cigarettes can also prime the adolescent brain for addiction to other drugs such as cocaine. Exposure to nicotine and its great risk of developing an addiction, are areas of significant concern.

References

  1. 1 2 Lavoie FW, Harris TM (1991). "Fatal nicotine ingestion". The Journal of Emergency Medicine. 9 (3): 133–136. doi:10.1016/0736-4679(91)90318-a. PMID   2050970.
  2. 1 2 McNally WD (1920). "A report of five cases of poisoning by nicotine". Journal of Laboratory and Clinical Medicine. 5: 213–217.
  3. McNally WD (1923). "A report of seven cases of nicotine poisoning". Journal of Laboratory and Clinical Medicine. 8: 83–85.
  4. 1 2 3 4 5 6 7 8 9 Schep LJ, Slaughter RJ, Beasley DM (September 2009). "Nicotinic plant poisoning". Clinical Toxicology. 47 (8): 771–781. doi:10.1080/15563650903252186. PMID   19778187. S2CID   28312730.
  5. 1 2 3 Smolinske SC, Spoerke DG, Spiller SK, Wruk KM, Kulig K, Rumack BH (January 1988). "Cigarette and nicotine chewing gum toxicity in children". Human Toxicology. 7 (1): 27–31. doi:10.1177/096032718800700105. PMID   3346035. S2CID   27707333.
  6. 1 2 Furer V, Hersch M, Silvetzki N, Breuer GS, Zevin S (March 2011). "Nicotiana glauca (tree tobacco) intoxication--two cases in one family". Journal of Medical Toxicology. 7 (1): 47–51. doi:10.1007/s13181-010-0102-x. PMC   3614112 . PMID   20652661.
  7. 1 2 Mayer B (January 2014). "How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century". Archives of Toxicology. 88 (1): 5–7. doi:10.1007/s00204-013-1127-0. PMC   3880486 . PMID   24091634.
  8. Martin T, Morgan S, Edwards WC (August 1986). "Evaluation of normal brain sodium levels in cattle". Veterinary and Human Toxicology. 28 (4): 308–309. PMID   3750811.
  9. Malizia E, Andreucci G, Alfani F, Smeriglio M, Nicholai P (April 1983). "Acute intoxication with nicotine alkaloids and cannabinoids in children from ingestion of cigarettes". Human Toxicology. 2 (2): 315–316. doi:10.1177/096032718300200222. PMID   6862475. S2CID   29806143.
  10. Brown CJ, Cheng JM (May 2014). "Electronic cigarettes: product characterisation and design considerations". Tobacco Control. 23 (Supplement 2): ii4–i10. doi:10.1136/tobaccocontrol-2013-051476. PMC   3995271 . PMID   24732162.
  11. Davies P, Levy S, Pahari A, Martinez D (December 2001). "Acute nicotine poisoning associated with a traditional remedy for eczema". Archives of Disease in Childhood. 85 (6): 500–502. doi:10.1136/adc.85.6.500. PMC   1718993 . PMID   11719343.
  12. Gehlbach SH, Williams WA, Perry LD, Woodall JS (September 1974). "Green-tobacco sickness. An illness of tobacco harvesters". JAMA. 229 (14): 1880–1883. doi:10.1001/jama.1974.03230520022024. PMID   4479133.
  13. Detailed reference list is located at a separate image page.
  14. 1 2 Saxena K, Scheman A (December 1985). "Suicide plan by nicotine poisoning: a review of nicotine toxicity". Veterinary and Human Toxicology. 27 (6): 495–497. PMID   4082460.
  15. 1 2 3 4 5 6 7 8 9 10 Chatham-Stephens K, Law R, Taylor E, Kieszak S, Melstrom P, Bunnell R, et al. (December 2016). "Exposure Calls to U. S. Poison Centers Involving Electronic Cigarettes and Conventional Cigarettes-September 2010-December 2014". Journal of Medical Toxicology. 12 (4): 350–357. doi:10.1007/s13181-016-0563-7. PMC   5135675 . PMID   27352081.
  16. Chatham-Stephens K, Law R, Taylor E, Melstrom P, Bunnell R, Wang B, et al. (April 2014). "Notes from the field: calls to poison centers for exposures to electronic cigarettes--United States, September 2010-February 2014". MMWR. Morbidity and Mortality Weekly Report. 63 (13): 292–293. PMC   5779356 . PMID   24699766.
  17. 1 2 3 Nelluri BK, Murphy K, Mookadam F (May 2015). "Electronic cigarettes and cardiovascular risk: hype or up in smoke?". Future Cardiology. 11 (3): 271–273. doi: 10.2217/fca.15.13 . PMID   26021631.
  18. 1 2 3 Wang B, Liu S, Persoskie A (June 2020). "Poisoning exposure cases involving e-cigarettes and e-liquid in the United States, 2010-2018". Clinical Toxicology. 58 (6): 488–494. doi:10.1080/15563650.2019.1661426. PMC   7061080 . PMID   31496321.
  19. IPCS INCHEM
  20. Okamoto M, Kita T, Okuda H, Tanaka T, Nakashima T (July 1994). "Effects of aging on acute toxicity of nicotine in rats". Pharmacology & Toxicology. 75 (1): 1–6. doi:10.1111/j.1600-0773.1994.tb00316.x. PMID   7971729.
  21. Jimenez Ruiz CA, Solano Reina S, de Granda Orive JI, Signes-Costa Minaya J, de Higes Martinez E, Riesco Miranda JA, et al. (August 2014). "The electronic cigarette. Official statement of the Spanish Society of Pneumology and Thoracic Surgery (SEPAR) on the efficacy, safety and regulation of electronic cigarettes". Archivos de Bronconeumologia. 50 (8): 362–367. doi:10.1016/j.arbres.2014.02.006. PMID   24684764.
  22. "Consumer Updates: Nicotine Replacement Therapy Labels May Change". FDA. April 1, 2013.
  23. Woolf A, Burkhart K, Caraccio T, Litovitz T (1996). "Self-poisoning among adults using multiple transdermal nicotine patches". Journal of Toxicology. Clinical Toxicology. 34 (6): 691–698. doi:10.3109/15563659609013830. PMID   8941198.
  24. Labelle A, Boulay LJ (March 1999). "An attempted suicide using transdermal nicotine patches". Canadian Journal of Psychiatry. 44 (2): 190. PMID   10097845.
  25. Lockhart LP (1933). "Nicotine poisoning". British Medical Journal. 1 (3762): 246–7. doi:10.1136/bmj.1.3762.246-c. PMC   2368002 .
  26. Faulkner JM (1933). "Nicotine poisoning by absorption through the skin". JAMA. 100 (21): 1664–1665. doi:10.1001/jama.1933.02740210012005.
  27. 1 2 3 4 5 McNeill A, Brose LS, Calder R, Hitchman SC, Hajek P, McRobbie H (August 2015). "E-cigarettes: an evidence update" (PDF). UK: Public Health England. p. 63.
  28. Hua M, Talbot P (December 2016). "Potential health effects of electronic cigarettes: A systematic review of case reports". Preventive Medicine Reports. 4: 169–178. doi:10.1016/j.pmedr.2016.06.002. PMC   4929082 . PMID   27413679.
  29. Biyani S, Derkay CS (August 2015). "E-cigarettes: Considerations for the otolaryngologist". International Journal of Pediatric Otorhinolaryngology. 79 (8): 1180–1183. doi:10.1016/j.ijporl.2015.04.032. PMID   25998217.
  30. Zevin S, Gourlay SG, Benowitz NL (1998). "Clinical pharmacology of nicotine". Clinics in Dermatology. 16 (5): 557–564. doi:10.1016/s0738-081x(98)00038-8. PMID   9787965.
  31. Rosenberg J, Benowitz NL, Jacob P, Wilson KM (October 1980). "Disposition kinetics and effects of intravenous nicotine". Clinical Pharmacology and Therapeutics. 28 (4): 517–522. doi:10.1038/clpt.1980.196. PMID   7408411. S2CID   10531903.
  32. Rogers AJ, Denk LD, Wax PM (February 2004). "Catastrophic brain injury after nicotine insecticide ingestion". The Journal of Emergency Medicine. 26 (2): 169–172. doi:10.1016/j.jemermed.2003.05.006. PMID   14980338.
  33. Bhalala O (Spring 2003). "Detection of Cotinine in Blood Plasma by HPLC MS/MS". MIT Undergraduate Research Journal. 8: 45–50.