Caffeine dependence | |
---|---|
Other names | Caffeine addiction |
Molecular structure of caffeine | |
Specialty | Psychiatry |
Caffeine dependence is a condition characterized by a set of criteria, including tolerance, withdrawal symptoms, persistent desire or unsuccessful efforts to control use, and continued use despite knowledge of adverse consequences attributed to caffeine. [1] It can appear in physical dependence or psychological dependence, or both. Caffeine is one of the most common additives in many consumer products, including pills and beverages such as caffeinated alcoholic beverages, energy drinks, pain reliever medications, and colas. Caffeine is found naturally in various plants such as coffee and tea. Studies have found that 89 percent of adults in the U.S. consume on average 200 mg of caffeine daily. [2] One area of concern that has been presented is the relationship between pregnancy and caffeine consumption. Repeated caffeine doses of 100 mg appeared to result in smaller size at birth in newborns. When looking at birth weight however, caffeine consumption did not appear to make an impact. [3]
Moderate physical dependence often arises from prolonged long-term caffeine use. [4] In the human body, caffeine blocks adenosine receptors A1 and A2A. [5] Adenosine is a by-product of cellular activity: the stimulation of adenosine receptors produces feelings of tiredness and a drive for sleep. Caffeine's ability to block these receptors means the levels of the body's natural stimulants, dopamine and norepinephrine, continue at higher levels.
Continued exposure to caffeine prompts the body to create more adenosine-receptors in the central nervous system, which increases the body's adenosine sensitivity. This reduces the stimulatory effects of caffeine by increasing tolerance. It also causes the body to suffer withdrawal symptoms (such as headaches, fatigue, and irritability) if caffeine intake decreases. [6]
The Diagnostic and Statistical Manual of Mental Disorders describes four caffeine-related disorders including intoxication, withdrawal, anxiety, and sleep. [7]
Pathologically reinforced caffeine use induces a dependence syndrome, but not an addiction. [8] For a drug to induce an addiction from repeated use at sufficiently high doses, it must activate the brain's reward circuitry, particularly the mesolimbic pathway. [8] Neuroimaging studies of preclinical and human subjects have demonstrated that chronic caffeine consumption does not sufficiently activate the reward system, relative to other drugs of addiction (e.g., cocaine, morphine, nicotine). [9] [10] [11] As a consequence, compulsive use (i.e., an addiction) of caffeine has yet to be observed in humans. [8] Caffeine dependence forms due to caffeine antagonizing the adenosine A2A receptor, [12] effectively blocking adenosine from the adenosine receptor site. This delays the onset of drowsiness and releases dopamine. [13] As of right now, caffeine withdrawal qualifies as a psychiatric condition by the American Psychiatric Association, but caffeine-use disorder does not. [14]
Professor Roland R. Griffiths, a professor of neurology at Johns Hopkins in Baltimore, strongly believes that caffeine withdrawal should be classified as a psychological disorder. [15] His research suggests that withdrawal affects 50% of habitual coffee drinkers, beginning within 12–24 hours after cessation of caffeine intake, and peaking in 20–48 hours, lasting as long as 9 days. [16] [17] In another study, he concluded that people who take in a minimum of 100 mg of caffeine per day (about the amount in one cup of coffee) can acquire a physical dependence that would trigger withdrawal symptoms, including muscle pain and stiffness, nausea, vomiting, depressed mood, and other symptoms. [15] [6]
Caffeine dependence can cause a host of physiological effects if caffeine consumption is not maintained. Commonly known caffeine withdrawal symptoms include headaches, fatigue, loss of focus, lack of motivation, mood swings, nausea, insomnia, dizziness, cardiac issues, hypertension, anxiety, and backache and joint pain; these can range in severity from mild to severe. [18] These symptoms may occur within 12–24 hours and can last two to nine days. [19] [20] [21]
Tests are still being done to get a better understanding of the effects that occur when people become dependent on different forms of caffeine to make it through the day. There has been research findings that suggest that the circadian cycle is not significantly changed under popular practices of caffeine consumption in the morning and during the afternoon. [22]
According to the American Academy of Pediatrics (AAP), it is not recommended for individuals under the age of 18 to consume several caffeinated drinks in one day. [23] Failure to restrict caffeine intake can lead to side effects such as increase in heart rate and blood pressure, sleep disturbance, mood swings, and acid reflux.; caffeine's lasting effects on children's nervous and cardiovascular systems are currently unknown. Some research has suggested that caffeinated drinks should not be advertised to children as a primary audience. [24] [25]
If pregnant, it is recommended not to consume more than 200 mg of caffeine a day (though this is relative to the pregnant woman's weight). [26] If a pregnant woman consumes high levels of caffeine, it can result in low birth weight due to loss of blood flow to the placenta, [27] and could lead to health problems later in the child's life. [28] It can also result in premature labor, reduced fertility, and other reproductive issues. The American Pregnancy Association suggests "avoiding caffeine as much as possible" before and during pregnancy or discussing how to curtail dependency with a healthcare provider. [29]
Understanding effective treatment strategies is crucial in managing caffeine dependence, a condition that has garnered increasing attention in recent years. A plethora of studies have surfaced aimed at reducing caffeine intake and alleviating withdrawal symptoms. One significant contribution comes from a comprehensive review and research agenda that undertook a thorough examination of caffeine use disorder. [20] This review not only discusses potential diagnostic criteria but also highlights the far-reaching implications for individuals struggling with caffeine dependency. The author characterizes caffeine as a widely consumed substance, yet one that is not immune to fostering dependency. Despite its generally recognized safety profile, clinical evidence suggests a concerning trend wherein users develop a reliance on caffeine, often struggling to curtail consumption despite recurring health concerns, such as cardiovascular issues and perinatal complications. [30]
Evidence-based treatment strategies offer hope for individuals seeking to break free from caffeine dependency. These strategies encompass a spectrum of approaches, including dose tapering, intermittent fasting, diligent monitoring of caffeine intake through journaling, and the incorporation of regular exercise coupled with professional counseling. [20]
One effective approach to managing caffeine dependence is dose tapering, where caffeine intake is reduced over time. This method allows the body to adjust to lower levels of caffeine gradually, minimizing withdrawal symptoms and discomfort. A study published in the Journal of Caffeine Research demonstrates the efficacy of dose tapering in reducing caffeine consumption among habitual users. Participants who followed a tapering schedule experienced fewer withdrawal symptoms and were more successful in reducing their overall caffeine intake compared to those who abruptly stopped caffeine consumption. [20]
Intermittent fasting, a dietary regimen that involves alternating periods of eating and fasting, has emerged as a potential strategy for managing caffeine dependence. Research suggests that intermittent fasting may help regulate caffeine intake by creating structure periods of abstaining from caffeine consumption. Additionally, intermittent fasting has been associated with improved metabolic health and cognitive function, which may support individuals in overcoming caffeine dependence. [20]
Seeking professional counseling or therapy can also be beneficial for individuals struggling with caffeine dependence. Counseling sessions provide a supportive environment for individuals to explore the underlying reasons for their caffeine consumption habits and develop coping strategies to manage cravings and withdrawal symptoms. Cognitive behavioral therapy (CBT), in particular, has shown promise in treating substance use disorders, including caffeine dependence. A meta-analysis published in the Journal of Consulting and Clinical Psychology found that CBT interventions were effective in reducing caffeine consumption and improving psychological outcomes among individuals with caffeine dependence.[ citation needed ]
Regular physical exercise has been shown to have numerous benefits for overall health and well-being, including aiding in the management of caffeine dependence. Engaging in regular exercise can help individuals reduce stress, improve mood, and promote better sleep quality, all of which may contribute to reducing reliance on caffeine as a stimulant.
It is important that while many adults consume caffeine on a daily basis, withdrawal symptoms may not manifest until 12–24 hours after cessation and can persist for as long as 2–9 days. Such symptoms can significantly impact daily functioning, giving rise to fatigue, headaches, irritability, nausea, mood fluctuations, flu-like symptoms, and dizziness. [31]
Caffeine is a central nervous system (CNS) stimulant of the methylxanthine class and is the most commonly consumed psychoactive substance globally. It is mainly used for its eugeroic, ergogenic, or nootropic properties. Caffeine acts by blocking binding of adenosine at a number of adenosine receptor types, inhibiting the centrally depressant effects of adenosine and enhancing the release of acetylcholine. Caffeine has a three-dimensional structure similar to that of adenosine, which allows it to bind and block its receptors. Caffeine also increases cyclic AMP levels through nonselective inhibition of phosphodiesterase, increases calcium release from intracellular stores, and antagonises GABA receptors, although these mechanisms typically occur at concentrations beyond usual human consumption.
Psychopharmacology is the scientific study of the effects drugs have on mood, sensation, thinking, behavior, judgment and evaluation, and memory. It is distinguished from neuropsychopharmacology, which emphasizes the correlation between drug-induced changes in the functioning of cells in the nervous system and changes in consciousness and behavior.
Stimulants are a class of drugs that increase the activity of the brain. They are used for various purposes, such as enhancing alertness, attention, motivation, cognition, mood, and physical performance. Some of the most common stimulants are caffeine, nicotine, amphetamines, cocaine, methylphenidate, and modafinil.
Chocolate addiction is a compulsive desire to eat chocolate despite negative consequences.
Dopamine receptors are a class of G protein-coupled receptors that are prominent in the vertebrate central nervous system (CNS). Dopamine receptors activate different effectors through not only G-protein coupling, but also signaling through different protein interactions. The neurotransmitter dopamine is the primary endogenous ligand for dopamine receptors.
In internal medicine, relapse or recidivism is a recurrence of a past condition. For example, multiple sclerosis and malaria often exhibit peaks of activity and sometimes very long periods of dormancy, followed by relapse or recrudescence.
Substance dependence, also known as drug dependence, is a biopsychological situation whereby an individual's functionality is dependent on the necessitated re-consumption of a psychoactive substance because of an adaptive state that has developed within the individual from psychoactive substance consumption that results in the experience of withdrawal and that necessitates the re-consumption of the drug. A drug addiction, a distinct concept from substance dependence, is defined as compulsive, out-of-control drug use, despite negative consequences. An addictive drug is a drug which is both rewarding and reinforcing. ΔFosB, a gene transcription factor, is now known to be a critical component and common factor in the development of virtually all forms of behavioral and drug addictions, but not dependence.
A dopamine agonist is a compound that activates dopamine receptors. There are two families of dopamine receptors, D1-like and D2-like. They are all G protein-coupled receptors. D1- and D5-receptors belong to the D1-like family and the D2-like family includes D2, D3 and D4 receptors. Dopamine agonists are primarily used in the treatment of the motor symptoms of Parkinson's disease, and to a lesser extent, in hyperprolactinemia and restless legs syndrome. They are also used off-label in the treatment of clinical depression. Impulse control disorders are associated with the use of dopamine agonists for whatever condition.
Caffeine-induced sleep disorder was a psychiatric disorder identified as resulting from overconsumption of the stimulant caffeine.
Nicotine dependence is a state of substance dependence on nicotine. It is a chronic, relapsing disease characterized by a compulsive craving to use the drug despite social consequences, loss of control over drug intake, and the emergence of withdrawal symptoms. Tolerance is another component of drug dependence. Nicotine dependence develops over time as an individual continues to use nicotine. While cigarettes are the most commonly used tobacco product, all forms of tobacco use—including smokeless tobacco and e-cigarette use—can cause dependence. Nicotine dependence is a serious public health problem because it leads to continued tobacco use and the associated negative health effects. Tobacco use is one of the leading preventable causes of death worldwide, causing more than 8 million deaths per year and killing half of its users who do not quit. Current smokers are estimated to die an average of 10 years earlier than non-smokers.
Cocaine dependence is a neurological disorder that is characterized by withdrawal symptoms upon cessation from cocaine use. It also often coincides with cocaine addiction which is a biopsychosocial disorder characterized by persistent use of cocaine and/or crack despite substantial harm and adverse consequences. The Diagnostic and Statistical Manual of Mental Disorders, classifies problematic cocaine use as a stimulant use disorder. The International Classification of Diseases, includes "Cocaine dependence" as a classification (diagnosis) under "Disorders due to use of cocaine".
Psychological dependence is a cognitive disorder and a form of dependence that is characterized by emotional–motivational withdrawal symptoms upon cessation of prolonged drug use or certain repetitive behaviors. Consistent and frequent exposure to particular substances or behaviors is responsible for inducing psychological dependence, requiring ongoing engagement to prevent the onset of an unpleasant withdrawal syndrome driven by negative reinforcement. Neuronal counter-adaptation is believed to contribute to the generation of withdrawal symptoms through changes in neurotransmitter activity or altered receptor expression. Environmental enrichment and physical activity have been shown to attenuate withdrawal symptoms.
Istradefylline, sold under the brand name Nourianz, is a medication used as an add-on treatment to levodopa/carbidopa in adults with Parkinson's disease (PD) experiencing "off" episodes. Istradefylline reduces "off" periods resulting from long-term treatment with the antiparkinson drug levodopa. An "off" episode is a time when a patient's medications are not working well, causing an increase in PD symptoms, such as tremor and difficulty walking.
Tiapride is a drug that selectively blocks D2 and D3 dopamine receptors in the brain. It is used to treat a variety of neurological and psychiatric disorders including dyskinesia, alcohol withdrawal syndrome, negative symptoms of psychosis, and agitation and aggression in the elderly. A derivative of benzamide, tiapride is chemically and functionally similar to other benzamide antipsychotics such as sulpiride and amisulpride known for their dopamine antagonist effects.
Cannabis use disorder (CUD), also known as cannabis addiction or marijuana addiction, is a psychiatric disorder defined in the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and ICD-10 as the continued use of cannabis despite clinically significant impairment.
A psychoactive drug, mind-altering drug, or consciousness-altering drug is a chemical substance that changes brain function and results in alterations in perception, mood, consciousness, cognition, or behavior. The term psychotropic drug is often used interchangeably, while some sources present narrower definitions. These substances may be used medically; recreationally; to purposefully improve performance or alter one's consciousness; as entheogens for ritual, spiritual, or shamanic purposes; or for research, including psychedelic therapy. Some categories of psychoactive drugs, which have therapeutic value, are prescribed by physicians and other healthcare practitioners. Examples include anesthetics, analgesics, anticonvulsant and antiparkinsonian drugs as well as medications used to treat neuropsychiatric disorders, such as antidepressants, anxiolytics, antipsychotics, and stimulant medications. Some psychoactive substances may be used in the detoxification and rehabilitation programs for persons dependent on or addicted to other psychoactive drugs.
Caffeine-induced anxiety disorder is a subclass of the DSM-5 diagnosis of substance/medication-induced anxiety disorder.
Mitragynine is an indole-based alkaloid and the most abundant active alkaloid in the Southeast Asian plant Mitragyna speciosa, commonly known as kratom. The total alkaloid concentration in dried leaves ranges from 0.5 to 1.5%. In Thai varieties, mitragynine is the most abundant component, while 7-hydroxymitragynine is a minor constituent. In Malaysian kratom varieties, mitragynine is present at lower concentration. Such preparations are orally consumed and typically involve dried kratom leaves which are brewed into tea or ground and placed into capsules. Mitragynine consumption for medicinal and recreational purposes dates back centuries, although early use was primarily limited to Southeast Asian countries such as Indonesia and Thailand, where the plant grows indigenously. Recently, mitragynine use has spread throughout Europe and the Americas as both a recreational and medicinal drug. While research into the effects of kratom have begun to emerge, investigations on the active compound mitragynine are less common.
Opioid withdrawal is a set of symptoms arising from the sudden cessation or reduction of opioids where previous usage has been heavy and prolonged. Signs and symptoms of withdrawal can include drug craving, anxiety, restless legs syndrome, nausea, vomiting, diarrhea, sweating, and an elevated heart rate. Opioid use triggers a rapid adaptation in cellular signaling pathways that, when reduced or stopped, can cause adverse physiological effects. All opioids, both recreational drugs and medications, when reduced or stopped, can lead to opioid withdrawal symptoms. When withdrawal symptoms are due to recreational opioid use, the term opioid use disorder is used, whereas when due to prescribed medications, the term prescription opioid use disorder is used. Opioid withdrawal can be managed by the use of opioid replacement therapy, while symptoms may be relieved by the use of medications such as lofexidine and clonidine.
GSK-598809 is a selective dopamine D3 receptor antagonist that is or was under development for the treatment of substance-related disorders, smoking withdrawal, and eating disorders like binge eating disorder.
Addictive drugs are rewarding and reinforcing because they act in brain reward pathways to enhance either dopamine release or the effects of dopamine in the NAc or related structures, or because they produce effects similar to dopamine. ...
Long-term caffeine use can lead to mild physical dependence. A withdrawal syndrome characterized by drowsiness, irritability, and headache typically lasts no longer than a day. True compulsive use of caffeine has not been documented, and, consequently, these drugs are not considered addictive.
Astrid Nehlig and colleagues present evidence that in animals caffeine does not trigger metabolic increases or dopamine release in brain areas involved in reinforcement and reward. A single photon emission computed tomography (SPECT) assessment of brain activation in humans showed that caffeine activates regions involved in the control of vigilance, anxiety, and cardiovascular regulation but did not affect areas involved in reinforcement and reward.
the D1 receptor is not involved in the rewarding effects of caffeine. ... The current data indicates that caffeine has aversive effects at high doses and neither rewarding nor unpleasant effects at low doses. Previous work in rats has indicated that caffeine induces mild preferences at low doses (Brockwell et al., 1991; Bedingfield et al., 1998; Patkina & Zvartau, 1998) and aversions at high doses ... Indeed the rewarding effects of caffeine seen by Brockwell et al.(1991) were at one dose and small. This is similar to our current data; the lower doses of caffeine on our dose-response curve are weakly, but non-significantly rewarding. Also consistent, the rewarding effects of caffeine in humans are mild or absent in individuals with limited caffeine experience
We show a significant increase in D2/D3R availability in striatum with caffeine administration, which indicates that caffeine at doses consumed by humans does not increase DA in striatum. Instead we interpret our findings to indicate that caffeine's DA-enhancing effects in the human brain are indirect and mediated by an increase in D2/D3R levels and/or changes in D2/D3R affinity.