Perspiration

Last updated
Perspiration
Other namesSweating, hidrosis, diaphoresis
Amanda Francozo At The Runner Sports Fragment.jpg
Droplets of perspiration on the skin
Specialty Dermatology
Symptoms Body odor
Complications Dehydration
Causes Fever
Heat
Hyperthermia
Hot flash
Prevention Drinking water
Treatment Antiperspirant

Perspiration, also known as sweat, is the fluid secreted by sweat glands in the skin of mammals. [1]

Contents

Two types of sweat glands can be found in humans: eccrine glands and apocrine glands. [2] The eccrine sweat glands are distributed over much of the body and are responsible for secreting the watery, brackish sweat most often triggered by excessive body temperature. Apocrine sweat glands are restricted to the armpits and a few other areas of the body and produce an odorless, oily, opaque secretion which then gains its characteristic odor from bacterial decomposition.

In humans, sweating is primarily a means of thermoregulation, which is achieved by the water-rich secretion of the eccrine glands. Maximum sweat rates of an adult can be up to 2–4 litres (0.53–1.06 US gal) per hour or 10–14 litres (2.6–3.7 US gal) per day, but is less in children prior to puberty. [3] [4] [5] Evaporation of sweat from the skin surface has a cooling effect due to evaporative cooling. Hence, in hot weather, or when the individual's muscles heat up due to exertion, more sweat is produced. Animals with few sweat glands, such as dogs, accomplish similar temperature regulation results by panting, which evaporates water from the moist lining of the oral cavity and pharynx.

Although sweating is found in a wide variety of mammals, [6] [7] relatively few (apart from humans, horses, some primates and some bovidae) produce sweat in order to cool down. [8] In horses, such cooling sweat is created by apocrine glands [9] and contains a wetting agent, the protein latherin, so it transfers from the skin to the surface of their coats. [10]

Definitions

Signs and symptoms

Sweat contributes to body odor when it is metabolized by bacteria on the skin. Medications that are used for other treatments and diet also affect odor. Some medical conditions, such as kidney failure and diabetic ketoacidosis, can also affect sweat odor.[ citation needed ]

Causes

A man in a sweat-drenched shirt, after some physical exertion. Demonstration of Sweat.jpg
A man in a sweat-drenched shirt, after some physical exertion.

Diaphoresis is a non-specific symptom or sign, which means that it has many possible causes. Some causes of diaphoresis include physical exertion, menopause, fever, ingestion of toxins or irritants, and high environmental temperature. Strong emotions (anger, fear, anxiety) and recall of past trauma can also trigger sweating.[ citation needed ]

The vast majority of sweat glands in the body are innervated by sympathetic cholinergic neurons. [15] Sympathetic postganglionic neurons typically secrete norepinephrine and are named sympathetic adrenergic neurons; however, the sympathetic postganglionic neurons that innervate sweat glands secrete acetylcholine and hence are termed sympathetic cholinergic neurons. Sweat glands, piloerector muscles, and some blood vessels are innervated by sympathetic cholinergic neurons.

Pathological sweating and symptoms

Diaphoresis may be associated with some abnormal conditions, such as hyperthyroidism and shock. If it is accompanied by unexplained weight loss, fever/chills, or by palpitations, shortness of breath, unconsciousness, fatigue, dizziness, muscle pain, nausea, vomiting, diarrhea, and chest discomfort, it suggests serious illness.

Diaphoresis is also seen in an acute myocardial infarction (heart attack), from the increased firing of the sympathetic nervous system, and is frequent in serotonin syndrome, which can result in serious sickness or even death. Diaphoresis can also be caused by many types of infections, often accompanied by high fever and/or chills which can trigger the result of hyperthermia. Most infections can cause some degree of diaphoresis and it is a very common symptom in some serious infections such as malaria and tuberculosis. In addition, pneumothorax can cause diaphoresis with splinting of the chest wall. Neuroleptic malignant syndrome and other malignant diseases (e.g. leukemias) can also cause diaphoresis. [16]

Diabetics relying on insulin shots or oral medications may have low blood sugar (hypoglycemia), which can also cause diaphoresis.

Drugs (including caffeine, morphine, alcohol, antidepressants and certain antipsychotics) may be causes, as well as withdrawal from alcohol, benzodiazepines, nonbenzodiazepines or narcotic painkiller dependencies. Sympathetic nervous system stimulants such as cocaine and amphetamines have also been associated with diaphoresis. Diaphoresis due to ectopic catecholamine is a classic symptom of a pheochromocytoma, a rare tumor of the adrenal gland. Acetylcholinesterase inhibitors (e.g. some insecticides) also cause contraction of sweat gland smooth muscle leading to diaphoresis. Mercury is well known for its use as a diaphoretic, and was widely used in the 19th and early 20th century by physicians to "purge" the body of an illness. However, due to the high toxicity of mercury, secondary symptoms would manifest, which were erroneously attributed to the former disease that was being treated with mercurials.[ citation needed ]

Infantile acrodynia (childhood mercury poisoning) is characterized by excessive perspiration. A clinician should immediately consider acrodynia in an afebrile child who is sweating profusely.

Some people can develop a sweat allergy. [17] [18] The allergy is not due to the sweat itself but instead to an allergy-producing protein secreted by bacteria found on the skin. [18] :52 Tannic-acid has been found to suppress the allergic response along with showering. [17]

Hyperhidrosis

Millions of people are affected by hyperhidrosis, but more than half never receive treatment due to embarrassment, lack of awareness, or lack of concern. [19] While it most commonly affects the armpits, feet, and hands, it is possible for someone to experience this condition over their whole body. The face is another common area for hyperhidrosis to be an issue. Sweating uncontrollably is not always expected and may be embarrassing to people with the condition. It can cause both physiological and emotional problems in patients. It is generally inherited. [19] It is not life-threatening, but it is threatening to a person's quality of life. [20] Treatments for hyperhidrosis include antiperspirants, iontophoresis, and surgical removal of sweat glands. In severe cases, botulinum toxin injections or surgical cutting of nerves that stimulate the excessive sweating (endoscopic thoracic sympathectomy) may be an option. [19]

Night sweats

Night sweats, also known as nocturnal hyperhidrosis, is the occurrence of excessive sweating during sleep. The person may or may not also perspire excessively while awake.

One of the most common causes of night sweats in women over 40 is the hormonal changes related to menopause and perimenopause. This is a very common occurrence during the menopausal transition years.

While night sweats might be relatively harmless, it can also be a sign of a serious underlying disease. It is important to distinguish night sweats due to medical causes from those that occur simply because the sleep environment is too warm, either because the bedroom is unusually hot or because there are too many covers on the bed. Night sweats caused by a medical condition or infection can be described as "severe hot flashes occurring at night that can drench sleepwear and sheets, which are not related to the environment". Some of the underlying medical conditions and infections that cause these severe night sweats can be life-threatening and should promptly be investigated by a medical practitioner.[ citation needed ]

Mechanism

The evaporation of sweat on the skin cools the body. Sweaty runner.jpg
The evaporation of sweat on the skin cools the body.

Sweating allows the body to regulate its temperature. Sweating is controlled from a center in the preoptic and anterior regions of the brain's hypothalamus, where thermosensitive neurons are located. The heat-regulatory function of the hypothalamus is also affected by inputs from temperature receptors in the skin. High skin temperature reduces the hypothalamic set point for sweating and increases the gain of the hypothalamic feedback system in response to variations in core temperature. Overall, however, the sweating response to a rise in hypothalamic ('core') temperature is much larger than the response to the same increase in average skin temperature.[ citation needed ]

Sweating causes a decrease in core temperature through evaporative cooling at the skin surface. As high energy molecules evaporate from the skin, releasing energy absorbed from the body, the skin and superficial vessels decrease in temperature. Cooled venous blood then returns to the body's core and counteracts rising core temperatures.[ citation needed ]

There are two situations in which the nerves will stimulate the sweat glands, causing perspiration: during physical heat and during emotional stress. In general, emotionally induced sweating is restricted to palms, soles, armpits, and sometimes the forehead, while physical heat-induced sweating occurs throughout the body. [21]

People have an average of two to four million sweat glands, but how much sweat is released by each gland is determined by many factors, including sex, genetics, environmental conditions, age and fitness level. Two of the major contributors to sweat rate are an individual's fitness level and weight. If an individual weighs more, sweat rate is likely to increase because the body must exert more energy to function and there is more body mass to cool down. On the other hand, a fit person will start sweating earlier and more readily. As someone becomes fit, the body becomes more efficient at regulating the body's temperature and sweat glands adapt along with the body's other systems. [22]

Human sweat is not pure water; though it contains no protein, it always contains a small amount (0.2–1%) of solute. When a person moves from a cold climate to a hot climate, adaptive changes occur in the sweating mechanisms of the person. This process is referred to as acclimatization: the maximum rate of sweating increases and its solute composition decreases. The volume of water lost in sweat daily is highly variable, ranging from 100 to 8,000 millilitres per day (0.041 to 3.259 imp fl oz/ks). The solute loss can be as much as 350 mmol/d (or 90 mmol/d acclimatised) of sodium under the most extreme conditions. During average intensity exercise, sweat losses can average up to 2 litres (0.44 imp gal; 0.53 US gal) of water/hour. In a cool climate and in the absence of exercise, sodium loss can be very low (less than 5 mmol/d). Sodium concentration in sweat is 30–65 mmol/L, depending on the degree of acclimatisation.[ citation needed ]

Horses have a thick, waterproofed, hairy coat that would normally block the rapid translocation of sweat water from the skin to the surface of the hair required for evaporative cooling. To solve this, horses have evolved a detergent-like protein, latherin, that they release at high concentrations in their sweat. [10] Their perspiration unlike humans is created by apocrine glands. [9] This protein, by wetting the horses' coat hairs facilitate water flow for cooling evaporation. The presence of this protein can be seen in the lathering that often occurs on the coats of sweating horses, especially when rubbed. [10] In hot conditions, horses during three hours of moderate-intensity exercise can loss 30 to 35 litres (6.6 to 7.7 imp gal; 7.9 to 9.2 US gal) of water and 100 grams (3.5 oz) of sodium, 198 grams (7.0 oz) of chloride and 45 grams (1.6 oz) of potassium. [9]

Composition

Beads of sweat emerging from eccrine glands TranspirationPerspirationCommonsFL.jpg
Beads of sweat emerging from eccrine glands

Sweat is mostly water. A microfluidic model of the eccrine sweat gland provides details on what solutes partition into sweat, their mechanisms of partitioning, and their fluidic transport to the skin surface. [23] Dissolved in the water are trace amounts of minerals, lactic acid, and urea. Although the mineral content varies, some measured concentrations are: sodium (0.9 gram/litre), potassium (0.2 g/L), calcium (0.015 g/L), and magnesium (0.0013 g/L). [24]

Relative to the plasma and extracellular fluid, the concentration of Na+ ions is much lower in sweat (~40 mM in sweat versus ~150 mM in plasma and extracellular fluid). Initially, within eccrine glands sweat has a high concentration of Na+ ions. In the sweat ducts, the Na+ ions are re-absorbed into tissue by epithelial sodium channels (ENaC) that are located on the apical membrane of epithelial cells that form the duct (see Fig. 9 of the reference). [2]

Many other trace elements are also excreted in sweat, again an indication of their concentration is (although measurements can vary fifteenfold) zinc (0.4 milligrams/litre), copper (0.3–0.8 mg/L), iron (1 mg/L), chromium (0.1 mg/L), nickel (0.05 mg/L), and lead (0.05 mg/L). [25] [26] Probably many other less-abundant trace minerals leave the body through sweating with correspondingly lower concentrations. Some exogenous organic compounds make their way into sweat as exemplified by an unidentified odiferous "maple syrup" scented compound in several of the species in the mushroom genus Lactarius. [27] In humans, sweat is hypoosmotic relative to plasma [28] (i.e. less concentrated). Sweat is found at moderately acidic to neutral pH levels, typically between 4.5 and 7.0. [29]

Sweat contains many glycoproteins. [30]

Other functions

Antimicrobial

Sweat may serve an antimicrobial function, like that of earwax or other secretory fluids (e.g., tears, saliva, and milk).[ clarification needed ] It does this through a combination of glycoproteins that either bind directly to, or prevent the binding of microbes to, the skin and seem to form part of the innate immune system. [30]

In 2001, researchers at Eberhard-Karls University in Tübingen, Germany, isolated a large protein called dermcidin from skin. This protein, which could be cleaved into other antimicrobial peptides, was shown to be effective at killing some species of bacteria and fungi that affect humans, including Escherichia coli , Enterococcus faecalis , Staphylococcus aureus , and Candida albicans . It was active at high salt concentrations and in the acidity range of human sweat, where it was present at concentrations of 1–10 mg/ml. [31] [32]

Society and culture

Artificial perspiration

Artificial skin capable of sweating similar to natural sweat rates and with the surface texture and wetting properties of regular skin has been developed for research purposes. [33] [34] Artificial perspiration is also available for in-vitro testing, and contains 19 amino acids and the most abundant minerals and metabolites in sweat.[ citation needed ]

Diagnostics

There is interest in its use in wearable technology. Sweat can be sampled and sensed non-invasively and continuously using electronic tattoos, bands, or patches. [35] However, sweat as a diagnostic fluid presents numerous challenges as well, such as very small sample volumes and filtration (dilution) of larger-sized hydrophilic analytes. Currently the only major commercial application for sweat diagnostics is for infant cystic fibrosis testing based on sweat chloride concentrations.[ citation needed ]

See also

Related Research Articles

In biology, homeostasis is the state of steady internal physical and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and includes many variables, such as body temperature and fluid balance, being kept within certain pre-set limits. Other variables include the pH of extracellular fluid, the concentrations of sodium, potassium, and calcium ions, as well as the blood sugar level, and these need to be regulated despite changes in the environment, diet, or level of activity. Each of these variables is controlled by one or more regulators or homeostatic mechanisms, which together maintain life.

<span class="mw-page-title-main">Exocrine gland</span> Gland that secretes substances onto an epithelial surface by way of a duct

Exocrine glands are glands that secrete substances onto an epithelial surface by way of a duct. Examples of exocrine glands include sweat, salivary, mammary, ceruminous, lacrimal, sebaceous, prostate and mucous. Exocrine glands are one of two types of glands in the human body, the other being endocrine glands, which secrete their products directly into the bloodstream. The liver and pancreas are both exocrine and endocrine glands; they are exocrine glands because they secrete products—bile and pancreatic juice—into the gastrointestinal tract through a series of ducts, and endocrine because they secrete other substances directly into the bloodstream. Exocrine sweat glands are part of the integumentary system; they have eccrine and apocrine types.

<span class="mw-page-title-main">Hyperthermia</span> Elevated body temperature due to failed thermoregulation

Hyperthermia, also known simply as overheating, is a condition in which an individual's body temperature is elevated beyond normal due to failed thermoregulation. The person's body produces or absorbs more heat than it dissipates. When extreme temperature elevation occurs, it becomes a medical emergency requiring immediate treatment to prevent disability or death. Almost half a million deaths are recorded every year from hyperthermia.

The excretory system is a passive biological system that removes excess, unnecessary materials from the body fluids of an organism, so as to help maintain internal chemical homeostasis and prevent damage to the body. The dual function of excretory systems is the elimination of the waste products of metabolism and to drain the body of used up and broken down components in a liquid and gaseous state. In humans and other amniotes, most of these substances leave the body as urine and to some degree exhalation, mammals also expel them through sweating.

<span class="mw-page-title-main">Dehydration</span> Deficit of total body water

In physiology, dehydration is a lack of total body water, with an accompanying disruption of metabolic processes. It occurs when free water loss exceeds free water intake, usually due to exercise, disease, or high environmental temperature. Mild dehydration can also be caused by immersion diuresis, which may increase risk of decompression sickness in divers.

A deodorant is a substance applied to the body to prevent or mask body odor caused by bacterial breakdown of perspiration, for example in the armpits, groin, or feet. A subclass of deodorants, called antiperspirants, prevents sweating itself, typically by blocking sweat glands. Antiperspirants are used on a wider range of body parts, at any place where sweat would be inconvenient or unsafe, since unwanted sweating can interfere with comfort, vision, and grip. Other types of deodorant allow sweating but prevent bacterial action on sweat, since human sweat only has a noticeable smell when it is decomposed by bacteria.

Body odor or body odour (BO) is present in all animals and its intensity can be influenced by many factors. Body odor has a strong genetic basis, but can also be strongly influenced by various factors, such as sex, diet, health, and medication. The body odor of human males plays an important role in human sexual attraction, as a powerful indicator of MHC/HLA heterozygosity. Significant evidence suggests that women are attracted to men whose body odor is different from theirs, indicating that they have immune genes that are different from their own, which may produce healthier offspring.

<span class="mw-page-title-main">Hyperhidrosis</span> Excessive sweating

Hyperhidrosis is a condition characterized by abnormally increased sweating, in excess of that required for regulation of body temperature. Although primarily a benign physical burden, hyperhidrosis can deteriorate quality of life from a psychological, emotional, and social perspective. In fact, hyperhidrosis almost always leads to psychological as well as physical and social consequences. People suffering from it present difficulties in the professional field, more than 80% experiencing a moderate to severe emotional impact from the disease and half are subject to depression.

Endoscopic thoracic sympathectomy (ETS) is a surgical procedure in which a portion of the sympathetic nerve trunk in the thoracic region is destroyed. ETS is used to treat excessive sweating in certain parts of the body, facial blushing, Raynaud's disease and reflex sympathetic dystrophy. By far the most common complaint treated with ETS is sweaty palms. The intervention is controversial and illegal in some jurisdictions. Like any surgical procedure, it has risks; the endoscopic sympathetic block (ESB) procedure and those procedures that affect fewer nerves have lower risks.

<span class="mw-page-title-main">Sweat gland</span> Small sweat-producing tubular skin structures

Sweat glands, also known as sudoriferous or sudoriparous glands, from Latin sudor 'sweat', are small tubular structures of the skin that produce sweat. Sweat glands are a type of exocrine gland, which are glands that produce and secrete substances onto an epithelial surface by way of a duct. There are two main types of sweat glands that differ in their structure, function, secretory product, mechanism of excretion, anatomic distribution, and distribution across species:

<span class="mw-page-title-main">Compensatory hyperhidrosis</span> Medical condition

Compensatory hyperhidrosis is a form of neuropathy. It is encountered in patients with myelopathy, thoracic disease, cerebrovascular disease, nerve trauma or after surgeries. The exact mechanism of the phenomenon is poorly understood. It is attributed to the perception in the hypothalamus (brain) that the body temperature is too high. The sweating is induced to reduce body heat.

<span class="mw-page-title-main">Epithelial sodium channel</span> Group of membrane proteins

The epithelial sodium channel(ENaC), (also known as amiloride-sensitive sodium channel) is a membrane-bound ion channel that is selectively permeable to sodium ions (Na+). It is assembled as a heterotrimer composed of three homologous subunits α or δ, β, and γ, These subunits are encoded by four genes: SCNN1A, SCNN1B, SCNN1G, and SCNN1D. The ENaC is involved primarily in the reabsorption of sodium ions at the collecting ducts of the kidney's nephrons. In addition to being implicated in diseases where fluid balance across epithelial membranes is perturbed, including pulmonary edema, cystic fibrosis, COPD and COVID-19, proteolyzed forms of ENaC function as the human salt taste receptor.

An apocrine sweat gland is composed of a coiled secretory portion located at the junction of the dermis and subcutaneous fat, from which a straight portion inserts and secretes into the infundibular portion of the hair follicle. In humans, apocrine sweat glands are found only in certain locations of the body: the axillae (armpits), areola and nipples of the breast, ear canal, eyelids, wings of the nostril, perineal region, and some parts of the external genitalia. Modified apocrine glands include the ciliary glands in the eyelids; the ceruminous glands, which produce ear wax; and the mammary glands, which produce milk. They are distinct from eccrine sweat glands which cover the whole body.

<span class="mw-page-title-main">Eccrine sweat gland</span> Sweat gland distributed almost all over the human body

Eccrine sweat glands are the major sweat glands of the human body. Eccrine sweat glands are found in virtually all skin, with the highest density in the palms of the hands, and soles of the feet, and on the head, but much less on the torso and the extremities. In other mammals, they are relatively sparse, being found mainly on hairless areas such as foot pads. They reach their peak of development in humans, where they may number 200–400/cm2 of skin surface. They produce sweat, a merocrine secretion which is clear, odorless substance, consisting primarily of water. These are present from birth. Their secretory part is present deep inside the dermis.

Sudomotor function refers to the autonomic nervous system control of sweat gland activity in response to various environmental and individual factors. Sweat production is a vital thermoregulatory mechanism used by the body to prevent heat-related illness as the evaporation of sweat is the body’s most effective method of heat reduction and the only cooling method available when the air temperature rises above skin temperature. In addition, sweat plays key roles in grip, microbial defense, and wound healing.

<span class="mw-page-title-main">Axon reflex</span>

The axon reflex is the response stimulated by peripheral nerves of the body that travels away from the nerve cell body and branches to stimulate target organs. Reflexes are single reactions that respond to a stimulus making up the building blocks of the overall signaling in the body's nervous system. Neurons are the excitable cells that process and transmit these reflex signals through their axons, dendrites, and cell bodies. Axons directly facilitate intercellular communication projecting from the neuronal cell body to other neurons, local muscle tissue, glands and arterioles. In the axon reflex, signaling starts in the middle of the axon at the stimulation site and transmits signals directly to the effector organ skipping both an integration center and a chemical synapse present in the spinal cord reflex. The impulse is limited to a single bifurcated axon, or a neuron whose axon branches into two divisions and does not cause a general response to surrounding tissue.

<span class="mw-page-title-main">Poroma</span>

Poromas are rare, benign, cutaneous adnexal tumors. Cutaneous adnexal tumors are a group of skin tumors consisting of tissues that have differentiated towards one or more of the four primary adnexal structures found in normal skin: hair follicles, sebaceous sweat glands, apocrine sweat glands, and eccrine sweat glands. Poromas are eccrine or apocrine sweat gland tumors derived from the cells in the terminal portion of these glands' ducts. This part of the sweat gland duct is termed the acrosyringium and had led to grouping poromas in the acrospiroma class of skin tumors. Here, poromas are regarded as distinct sweat gland tumors that differ from other sweat gland tumors by their characteristic clinical presentations, microscopic histopathology, and the genetic mutations that their neoplastic cells have recently been found to carry.

Sweat diagnostics is an emerging non-invasive technique used to provide insights to the health of the human body. Common sweat diagnostic tests include testing for cystic fibrosis and illicit drugs. Most testing of human sweat is in reference to the eccrine sweat gland which in contrast to the apocrine sweat gland, has a lower composition of oils.

As in other mammals, thermoregulation in humans is an important aspect of homeostasis. In thermoregulation, body heat is generated mostly in the deep organs, especially the liver, brain, and heart, and in contraction of skeletal muscles. Humans have been able to adapt to a great diversity of climates, including hot humid and hot arid. High temperatures pose serious stress for the human body, placing it in great danger of injury or even death. For humans, adaptation to varying climatic conditions includes both physiological mechanisms resulting from evolution and behavioural mechanisms resulting from conscious cultural adaptations.

The biochemistry of body odor pertains to the chemical compounds in the body responsible for body odor and their kinetics.

References

  1. Mosher HH (1 February 1933). "Simultaneous Study of Constituents of Urine and Perspiration". Journal of Biological Chemistry . 99 (3): 781–790. doi: 10.1016/S0021-9258(18)76026-2 . S2CID   43499897.
  2. 1 2 Hanukoglu I, Boggula VR, Vaknine H, Sharma S, Kleyman T, Hanukoglu A (January 2017). "Expression of epithelial sodium channel (ENaC) and CFTR in the human epidermis and epidermal appendages". Histochemistry and Cell Biology. 147 (6): 733–748. doi:10.1007/s00418-016-1535-3. PMID   28130590. S2CID   8504408.
  3. Jessen C (2000). Temperature Regulation in Humans and Other Mammals. Berlin: Springer. ISBN   978-3-540-41234-2.
  4. Mack GW, Nadel ER (1996). "Body fluid balance during heat stress in humans". In Fregly MJ, Blatteis CM (eds.). Handbook of Physiology. Section 4: Environmental Physiology. New York: Oxford University Press. pp. 187–214. ISBN   978-0-19-507492-5.
  5. Sawka ML, Wenger CB, Pandolf KB (1996). "Thermoregulatory responses to acute exercise-heat stress and heat acclimation". In Fregly MJ, Blatteis CM (eds.). Handbook of Physiology. Section 4: Environmental Physiology. New York: Oxford University Press. ISBN   978-0-19-507492-5.
  6. Goglia G (January 1953). "Italian: Cavia cobaya, Sus scrofa, Equus caballus" [Further research on the branched sweat glands in some mammals]. Bollettino della Società Italiana di Biologia Sperimentale (in Italian). 29 (1): 58–60. PMID   13066656.
  7. Robertshaw D, Taylor CR (November 1969). "Sweat gland function of the donkey (Equus asinus)". The Journal of Physiology. 205 (1): 79–89. doi:10.1113/jphysiol.1969.sp008952. PMC   1348626 . PMID   5347721.
  8. Jenkinson DM (April 1973). "Comparative Physiology of Sweating". British Journal of Dermatology. 88 (4): 397–406. doi:10.1111/j.1365-2133.1973.tb07573.x. PMID   4582049. S2CID   35727313.
  9. 1 2 3 McCutcheon LJ, Geor RJ (1998). "Sweating: Fluid and Ion Losses and Replacement". Veterinary Clinics of North America: Equine Practice. 14 (1): 75–95. doi:10.1016/s0749-0739(17)30213-4. ISSN   0749-0739. PMID   9561689.
  10. 1 2 3 McDonald RE, Fleming RI, Beeley JG, et al. (2009). Koutsopoulos S (ed.). "Latherin: A Surfactant Protein of Horse Sweat and Saliva". PLOS ONE. 4 (5): e5726. Bibcode:2009PLoSO...4.5726M. doi: 10.1371/journal.pone.0005726 . PMC   2684629 . PMID   19478940.
  11. Elsevier, Dorland's Illustrated Medical Dictionary, Elsevier.
  12. Wolters Kluwer, Stedman's Medical Dictionary, Wolters Kluwer.
  13. 1 2 "Academy of Hyperhidrosis". Allaboutsweat.com. Archived from the original on 2018-12-27. Retrieved 2014-04-05.
  14. Parsons K (2009). "Maintaining health, comfort and productivity in heat waves". Glob Health Action. 2: 2057. doi:10.3402/gha.v2i0.2057. PMC   2799322 . PMID   20052377.
  15. Boron, Walter F., and Emile L. Boulpaep. "Sweating." Medical Physiology. Updated 2nd ed. Philadelphia: Elsevier, 2012. 1260–264. Print.
  16. Neuroleptic Malignant Syndrome~clinical at eMedicine
  17. 1 2 Hiragun T, Hiragun M, Ishii K, Kan T, Hide M (July 2017). "Sweat allergy: Extrinsic or intrinsic?". Journal of Dermatological Science. 87 (1): 3–9. doi: 10.1016/j.jdermsci.2017.03.002 . PMID   28416076.
  18. 1 2 Yokozeki H, Murota H, Katayama I (1 September 2016). "Sweat Allergy". Perspiration Research. Current Problems in Dermatology. Vol. 51. pp. 101–108. doi:10.1159/000446788. ISBN   978-3-318-05904-5. LCCN   2016030383. OCLC   958455309. OL   40308286M. PMID   27584969 . Retrieved 13 January 2024 via Google Books.
  19. 1 2 3 "Hyperhidrosis". MedlinePlus, US National Library of Medicine. 7 June 2023. Retrieved 17 January 2024.
  20. Kamudoni P, Mueller B, Halford J, Schouveller A, Stacey B, Salek M (8 June 2017). "The impact of hyperhidrosis on patients' daily life and quality of life: a qualitative investigation". Health and Quality of Life Outcomes. 15 (1): 121. doi: 10.1186/s12955-017-0693-x . ISSN   1477-7525. PMC   5465471 . PMID   28595584.
  21. Kameia T, Tsudab T, Kitagawab S, Naitoha K, Nakashimaa K, Ohhashi T (5 June 1998). "Physical stimuli and emotional stress-induced sweat secretions in the human palm and forehead". Analytica Chimica Acta . 365 (1–3): 319–326. Bibcode:1998AcAC..365..319K. doi:10.1016/S0003-2670(97)00642-9. eISSN   1873-4324. ISSN   0003-2670. OCLC   01716731.
  22. Hansen J (22 May 2013). "The Science of Sweat". American College of Sports Medicine . Archived from the original on 21 September 2013. Retrieved 13 January 2023.
  23. Sonner Z, Wilder E, Heikenfeld J, Kasting G, Beyette F, Swaile D, Sherman F, Joyce J, Hagen J (2015-05-01). "The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications". Biomicrofluidics. 9 (3): 031301. doi:10.1063/1.4921039. ISSN   1932-1058. PMC   4433483 . PMID   26045728.
  24. Montain SJ, Cheuvront SN, Lukaski HC (2007). "Sweat mineral-element responses during 7 h of exercise-heat stress". International Journal of Sport Nutrition and Exercise Metabolism. 17 (6): 574–582. doi:10.1123/ijsnem.17.6.574. PMID   18156662. S2CID   3030692.
  25. Cohn JR, Emmett EA (1978). "The excretion of traces of metals in human sweat". Annals of Clinical and Laboratory Science. 8 (4): 270–5. PMID   686643.
  26. Saraymen R, Kılıç E, Yazar S (2004). "Sweat Copper, Zinc, Iron, Magnesium and Chromium Levels in National Wrestler". İnönü Üniversitesi Tıp Fakültesi Dergisi. 11 (1): 7–10. Archived from the original on 2011-08-20.
  27. Aurora, David "Lactarius fragilis" Mushrooms Demystified 1986 Ten Speed Press, Berkeley California
  28. Constanzo LS. BRS Physiology (6th ed.). p. 151.
  29. Bandodkar AJ, Hung VW, Jia W, Ramirez GV, Windmiller JR, Martinez AG, Ramirez J, Chan G, Kagan K, Wang J (2013). "Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring". Analyst. 138 (1): 123–8. Bibcode:2013Ana...138..123B. doi:10.1039/c2an36422k. PMID   23113321.
  30. 1 2 Robyn A Peterson, Audrey Gueniche, Ségolène Adam de Beaumais, Lionel Breton, Maria Dalko-Csiba, Nicolle H Packer (17 November 2015). "Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion". Glycobiology. 26 (3): 218–229. doi: 10.1093/glycob/cwv102 . PMID   26582610.
  31. Josefson D (2001-11-24). "Bacteria killer found in sweat". British Medical Journal. 323 (7323): 1206. doi:10.1136/bmj.323.7323.1206c. ISSN   0959-8138. PMC   1173041 .
  32. "DCD dermcidin [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-12-04.
  33. Hou L, Hagen J, Wang X, Papautsky I, Naik R, Kelley-Loughnane N, Heikenfeld J (2013-04-23). "Artificial microfluidic skin for in vitro perspiration simulation and testing". Lab on a Chip. 13 (10): 1868–1875. doi:10.1039/C3LC41231H. PMID   23576120.
  34. Jain V, Ochoa M, Jiang H, Rahimi R, Ziaie B (2019-06-17). "A mass-customizable dermal patch with discrete colorimetric indicators for personalized sweat rate quantification". Microsystems & Nanoengineering. 5 (1): 29. Bibcode:2019MicNa...5...29J. doi:10.1038/s41378-019-0067-0. ISSN   2055-7434. PMC   6572848 . PMID   31240108.
  35. Heikenfeld J (2016). "Non-invasive Analyte Access and Sensing through Eccrine Sweat: Challenges and Outlook circa 2016". Electroanalysis. 28 (6): 1242–1249. doi:10.1002/elan.201600018.

Further reading