Pulmonary function testing | |
---|---|
MeSH | D012129 |
OPS-301 code | 1-71 |
MedlinePlus | 003853 |
Pulmonary function testing (PFT) is a complete evaluation of the respiratory system including patient history, physical examinations, and tests of pulmonary function. The primary purpose of pulmonary function testing is to identify the severity of pulmonary impairment. [1] Pulmonary function testing has diagnostic and therapeutic roles and helps clinicians answer some general questions about patients with lung disease. PFTs are normally performed by a pulmonary function technologist, respiratory therapist, respiratory physiologist, physiotherapist, pulmonologist, or general practitioner.
Pulmonary function testing is a diagnostic and management tool used for a variety of reasons, such as:
Pulmonary function testing in patients with neuromuscular disorders helps to evaluate the respiratory status of patients at the time of diagnosis, monitor their progress and course, evaluate them for possible surgery, and gives an overall idea of the prognosis. [3]
Duchenne muscular dystrophy is associated with gradual loss of muscle function over time. Involvement of respiratory muscles results in poor ability to cough and decreased ability to breathe well and leads to collapse of part or all of the lung leading to impaired gas exchange and an overall insufficiency in lung strength. [4]
Spirometry includes tests of pulmonary mechanics – measurements of FVC, FEV1, FEF values, forced inspiratory flow rates (FIFs), and MVV. Measuring pulmonary mechanics assesses the ability of the lungs to move huge volumes of air quickly through the airways to identify airway obstruction.[ citation needed ]
The measurements taken by the spirometry device are used to generate a pneumotachograph that can help to assess lung conditions such as: asthma, pulmonary fibrosis, cystic fibrosis, and chronic obstructive pulmonary disease. Physicians may also use the test results to diagnose bronchial hyperresponsiveness to exercise, cold air, or pharmaceutical agents. [5]
The helium dilution technique for measuring lung volumes uses a closed, rebreathing circuit. [6] This technique is based on the assumptions that a known volume and concentration of helium in air begin in the closed spirometer, that the patient has no helium in their lungs, and that an equilibration of helium can occur between the spirometer and the lungs.[ citation needed ]
The nitrogen washout technique uses a non-rebreathing open circuit. The technique is based on the assumptions that the nitrogen concentration in the lungs is 78% and in equilibrium with the atmosphere, that the patient inhales 100% oxygen and that the oxygen replaces all of the nitrogen in the lungs. [7]
The plethysmography technique applies Boyle's law and uses measurements of volume and pressure changes to determine total lung volume, assuming temperature is constant. [8]
There are four lung volumes and four lung capacities. A lung's capacity consists of two or more lung volumes. The lung volumes are tidal volume (VT), inspiratory reserve volume (IRV), expiratory reserve volume (ERV), and residual volume (RV). The four lung capacities are total lung capacity (TLC), inspiratory capacity (IC), functional residual capacity (FRC) and vital capacity (VC).
Measurement of maximal inspiratory and expiratory pressures is indicated whenever there is an unexplained decrease in vital capacity or respiratory muscle weakness is suspected clinically. Maximal inspiratory pressure (MIP) is the maximal pressure that can be produced by the patient trying to inhale through a blocked mouthpiece. Maximal expiratory pressure (MEP) is the maximal pressure measured during forced expiration (with cheeks bulging) through a blocked mouthpiece after a full inhalation. Repeated measurements of MIP and MEP are useful in following the course of patients with neuromuscular disorders.[ citation needed ]
Measurement of the single-breath diffusing capacity for carbon monoxide (DLCO) is a fast and safe tool in the evaluation of both restrictive and obstructive lung disease.[ citation needed ]
When a patient has an obstructive defect, a bronchodilator test is given to evaluate if airway constriction is reversible with a short acting beta-agonist. This is defined as an increase of ≥12% and ≥200 mL in the FEV1 or FVC. [9]
The six-minute walk test is a good index of physical function and therapeutic response in patients with a chronic lung disease, such as COPD or idiopathic pulmonary fibrosis. [10] [11] [12]
Arterial blood gases (ABGs) are a helpful measurement in pulmonary function testing in selected patients. The primary role of measuring ABGs in individuals that are healthy and stable is to confirm hypoventilation when it is suspected on the basis of medical history, such as respiratory muscle weakness or advanced COPD.[ citation needed ]
ABGs also provide a more detailed assessment of the severity of hypoxemia in patients who have low normal oxyhemoglobin saturation.[ citation needed ]
Pulmonary function testing is a safe procedure; however, there is cause for concern regarding untoward reactions and the value of the test data should be weighed against potential hazards. Some complications include dizziness, shortness of breath, coughing, pneumothorax, and inducing an asthma attack. [13] [14]
There are some indications against a pulmonary function test being done. These include a recent heart attack, stroke, head injury, an aneurysm, or confusion. [15]
Subjects have measurements of height and weight taken before spirometry to determine what their predicted values should be. Additionally, a history of smoking, recent illness, and medications is taken.[ citation needed ]
In order for the forced vital capacity to be considered accurate it has to be conducted three times where the peak is sharp in the flow-volume curve and the exhalation time is longer than 6 seconds.
Repeatability of the PFT is determined by comparing the values of forced vital capacity (FVC) and forced expiratory volume at 1 second (FEV1). The difference between the highest values of two FVCs need to be within 5% or 150 mL. When the FVC is less than 1.0 L, the difference between the highest two values must be within 100 mL. Lastly, the difference between the two highest values of FEV1 should also be within 150 mL. The highest FVC and FEV1 may be used from each different test. Until the results of three tests meet the criteria of reproducibility, the test can be repeated up to eight times. If it is still not possible to get accurate results, the best three tests are used. [16]
Changes in lung volumes and capacities from normal are generally consistent with the pattern of lung impairment.
Spirometry is required for a diagnosis of COPD. [17]
Severity | FEV1 % predicted |
---|---|
Mild (GOLD 1) | ≥80 |
Moderate (GOLD 2) | 50–79 |
Severe (GOLD 3) | 30–49 |
Very severe (GOLD 4) | <30 |
Professional societies such as the American Thoracic Society and the European Respiratory Society have published guidelines regarding the conduct and interpretation of pulmonary function testing to ensure standardization and uniformity in performance of tests. The interpretation of tests depends on comparing the patients values to published normals from previous studies. Deviation from guidelines can result in false-positive or false negative test results, even though only a small minority of pulmonary function laboratories followed published guidelines for spirometry, lung volumes and diffusing capacity in 2012. [19]
The Global Initiative for Chronic Obstructive Lung Disease provides guidelines for the diagnosis, severity, and management of COPD. [20] To determine obstruction in a patient's lungs, the post-bronchodilator FEV1/FVC needs to be <0.7. [17] Then, the FEV1 percentage of predicted result is used to determine the degree of obstruction where the lower the percent the worse the obstruction. [18]
Several calculations are needed for what a normal maximum inspiratory (MIP) and expiratory pressure (MEP) is. For males this found by:
and
To find the lower limit of what is acceptable in males the equations are:
and
For females, the equations are slightly different. For the normal values this is used:
and
For find the lower limit of what it should be without impairment this form of the equations is used:
and
where
Lung volumes and lung capacities refer to the volume of air in the lungs at different phases of the respiratory cycle.
Spirometry is the most common of the pulmonary function tests (PFTs). It measures lung function, specifically the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled. Spirometry is helpful in assessing breathing patterns that identify conditions such as asthma, pulmonary fibrosis, cystic fibrosis, and COPD. It is also helpful as part of a system of health surveillance, in which breathing patterns are measured over time.
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of respiratory diseases affecting the interstitium and space around the alveoli of the lungs. It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, and perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage, but in interstitial lung disease, the repair process is disrupted, and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The disease presents itself with the following symptoms: shortness of breath, nonproductive coughing, fatigue, and weight loss, which tend to develop slowly, over several months. The average rate of survival for someone with this disease is between three and five years. The term ILD is used to distinguish these diseases from obstructive airways diseases.
Pulmonary fibrosis is a condition in which the lungs become scarred over time. Symptoms include shortness of breath, a dry cough, feeling tired, weight loss, and nail clubbing. Complications may include pulmonary hypertension, respiratory failure, pneumothorax, and lung cancer.
The peak expiratory flow (PEF), also called peak expiratory flow rate (PEFR) and peak flow measurement, is a person's maximum speed of expiration, as measured with a peak flow meter, a small, hand-held device used to monitor a person's ability to breathe out air. It measures the airflow through the bronchi and thus the degree of obstruction in the airways. Peak expiratory flow is typically measured in units of liters per minute (L/min).
Vital capacity (VC) is the maximum amount of air a person can expel from the lungs after a maximum inhalation. It is equal to the sum of inspiratory reserve volume, tidal volume, and expiratory reserve volume. It is approximately equal to Forced Vital Capacity (FVC).
Airway obstruction is a blockage of respiration in the airway that hinders the free flow of air. Airway obstructions can occur either in the upper airway (UPA) or lower airway (LOA). The upper airway consists of the nose, throat, and larynx. The lower airway comprises the trachea, bronchi, and bronchioles.
Bronchiolitis obliterans (BO), also known as obliterative bronchiolitis, constrictive bronchiolitis and popcorn lung, is a disease that results in obstruction of the smallest airways of the lungs (bronchioles) due to inflammation. Symptoms include a dry cough, shortness of breath, wheezing and feeling tired. These symptoms generally get worse over weeks to months. It is not related to cryptogenic organizing pneumonia, previously known as bronchiolitis obliterans organizing pneumonia.
Lung compliance, or pulmonary compliance, is a measure of the lung's ability to stretch and expand. In clinical practice it is separated into two different measurements, static compliance and dynamic compliance. Static lung compliance is the change in volume for any given applied pressure. Dynamic lung compliance is the compliance of the lung at any given time during actual movement of air.
Obstructive lung disease is a category of respiratory disease characterized by airway obstruction. Many obstructive diseases of the lung result from narrowing (obstruction) of the smaller bronchi and larger bronchioles, often because of excessive contraction of the smooth muscle itself. It is generally characterized by inflamed and easily collapsible airways, obstruction to airflow, problems exhaling, and frequent medical clinic visits and hospitalizations. Types of obstructive lung disease include asthma, bronchiectasis, bronchitis and chronic obstructive pulmonary disease (COPD). Although COPD shares similar characteristics with all other obstructive lung diseases, such as the signs of coughing and wheezing, they are distinct conditions in terms of disease onset, frequency of symptoms, and reversibility of airway obstruction. Cystic fibrosis is also sometimes included in obstructive pulmonary disease.
Restrictive lung diseases are a category of extrapulmonary, pleural, or parenchymal respiratory diseases that restrict lung expansion, resulting in a decreased lung volume, an increased work of breathing, and inadequate ventilation and/or oxygenation. Pulmonary function test demonstrates a decrease in the forced vital capacity.
Bronchial hyperresponsiveness is a state characterised by easily triggered bronchospasm.
The FEV1/FVC ratio, also called modified Tiffeneau-Pinelli index, is a calculated ratio used in the diagnosis of obstructive and restrictive lung disease. It represents the proportion of a person's vital capacity that they are able to expire in the first second of forced expiration (FEV1) to the full, forced vital capacity (FVC). FEV1/FVC ratio was first proposed by E.A. Haensler in 1950. The FEV1/FVC index should not be confused with the FEV1/VC index as they are different, although both are intended for diagnosing airway obstruction. Current recommendations for diagnosing pulmonary function recommend using the modified Tiffeneau-Pinelli index. This index is recommended to be represented as a decimal fraction with two digits after the decimal point.
Pulmonary rehabilitation, also known as respiratory rehabilitation, is an important part of the management and health maintenance of people with chronic respiratory disease who remain symptomatic or continue to have decreased function despite standard medical treatment. It is a broad therapeutic concept. It is defined by the American Thoracic Society and the European Respiratory Society as an evidence-based, multidisciplinary, and comprehensive intervention for patients with chronic respiratory diseases who are symptomatic and often have decreased daily life activities. In general, pulmonary rehabilitation refers to a series of services that are administered to patients of respiratory disease and their families, typically to attempt to improve the quality of life for the patient. Pulmonary rehabilitation may be carried out in a variety of settings, depending on the patient's needs, and may or may not include pharmacologic intervention.
An acute exacerbation of chronic obstructive pulmonary disease, or acute exacerbations of chronic bronchitis (AECB), is a sudden worsening of chronic obstructive pulmonary disease (COPD) symptoms including shortness of breath, quantity and color of phlegm that typically lasts for several days.
Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease characterized by chronic respiratory symptoms and airflow limitation. GOLD 2024 defined COPD as a heterogeneous lung condition characterized by chronic respiratory symptoms due to abnormalities of the airways and/or alveoli (emphysema) that cause persistent, often progressive, airflow obstruction.
The post bronchodilator test, also commonly referred to as a reversibility test, is a test that utilizes spirometry to assess possible reversibility of bronchoconstriction in diseases such as asthma.
Physiotherapists treating patients following uncomplicated coronary artery bypass surgery surgery continue to use interventions such as deep breathing exercises that are not supported by best available evidence. Standardised guidelines may be required to better match clinical practice with current literature.
A respiratory pressure meter measures the maximum inspiratory and expiratory pressures that a patient can generate at either the mouth (MIP and MEP) or inspiratory pressure a patient can generate through their nose via a sniff maneuver (SNIP). These measurements require patient cooperation and are known as volitional tests of respiratory muscle strength. Handheld devices displaying the measurement achieved in centimetres of water pressure (cmH2O) and the pressure trace created, allow quick patient testing away from the traditional pulmonary laboratory and are useful for ward-based, out-patient and preoperative assessment, as well as for use by pulmonologists and physiotherapists.
Asthma-Chronic Obstructive Pulmonary Disease (COPD) Overlap (ACO), also known as Asthma-COPD Overlap Syndrome (ACOS), is a chronic inflammatory, obstructive airway disease in which features of both asthma and COPD predominate. Asthma and COPD were once thought of as distinct entities; however, in some, there are clinical features of both asthma and COPD with significant overlap in pathophysiology and symptom profile. It is unclear whether ACO is a separate disease entity or a clinical subtype of asthma and COPD. The pathogenesis of ACO is poorly understood, but it is thought to involve both type 2 inflammation as well as type 1 inflammation. The incidence and prevalence of ACO are not well known. The risk factors for ACO are also incompletely understood, but tobacco smoke is known to be a major risk factor.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)