This article needs additional citations for verification .(January 2009) |
Plethysmograph | |
---|---|
MeSH | D010991 |
MedlinePlus | 003771 |
A plethysmograph is an instrument for measuring changes in volume within an organ or whole body (usually resulting from fluctuations in the amount of blood or air it contains). The word is derived from the Greek "plethysmos" (increasing, enlarging, becoming full), and "graphein" (to write). [1]
Pulmonary plethysmographs are commonly used to measure the functional residual capacity (FRC) of the lungs—the volume in the lungs when the muscles of respiration are relaxed—and total lung capacity. [2]
In a traditional plethysmograph (or "body box"), the test subject, or patient, is placed inside a sealed chamber the size of a small telephone booth with a single mouthpiece. At the end of normal expiration, the mouthpiece is closed. The patient is then asked to make an inspiratory effort. As the patient tries to inhale (a maneuver which looks and feels like panting), the lungs expand, decreasing pressure within the lungs and increasing lung volume. This, in turn, increases the pressure within the box since it is a closed system and the volume of the box compartment has decreased to accommodate the new volume of the subject.
With cabinless plethysmography, the patient is seated next to a desktop testing device and inserts the mouthpiece into their mouth. The patient takes a series of normal tidal breaths for approximately one minute. During this tidal breathing, a series of rapid interruptions occurs, with a shutter opening and closing, measuring pressure and volume. [3] Lung volume measurements taken with cabinless plethysmography are considered equivalent to body plethysmography. [4]
Boyle's Law is used to calculate the unknown volume within the lungs. First, the change in volume of the chest is computed. The initial pressure of the box times its volume is considered equal to the known pressure after expansion times the unknown new volume. Once the new volume is found, the original volume minus the new volume is the change in volume in the box and also the change in volume in the chest. With this information, Boyle's Law is used again to determine the original volume of gas in the chest: the initial volume (unknown) times the initial pressure is equal to the final volume times the final pressure. Starting from this principle, it can be shown [5] that the functional residual capacity is a function of the changes in volume and pressures as follows:
The difference between full and empty lungs can be used to assess diseases and airway passage restrictions. An obstructive disease will show increased FRC because some airways do not empty normally, while a restrictive disease will show decreased FRC. Body plethysmography is particularly appropriate for patients who have air spaces which do not communicate with the bronchial tree; in such patients helium dilution would give an incorrectly low reading.
Another important parameter, which can be calculated with a body plethysmograph is the airway resistance. During inhalation the chest expands, which increases the pressure within the box. While observing the so-called resistance loop (cabin pressure and flow), diseases can easily be recognized. If the resistance loop becomes planar, this shows a bad compliance of the lung. A COPD, for instance, can easily be discovered because of the unique shape of the corresponding resistance loop. [5]
Some plethysmograph devices are attached to arms, legs or other extremities and used to determine circulatory capacity. In water plethysmography an extremity, e.g. an arm, is enclosed in a water-filled chamber where volume changes can be detected. Air plethysmography uses a similar principle but based on an air-filled long cuff, which is more convenient but less accurate. Another practical device is mercury-filled strain gauges used to continuously measure circumference of the extremity, e.g. at mid calf. Impedance plethysmography is a non-invasive method used to detect venous thrombosis in these areas of the body.
Another common type of plethysmograph is the penile plethysmograph. This device is used to measure changes in blood flow in the penis. Although some researchers use this device to assess sexual arousal and sexual orientation, courts that have considered penile plethysmography generally rule that the technique is not sufficiently reliable for use in court. [6] An approximate female equivalent to penile plethysmography is vaginal photoplethysmography, which optically measures blood flow in the vagina. [7]
Plethysmography is a widely used method in basic and preclinical research to study respiration. Several techniques are used:
Whole-body plethysmography is used to measure respiratory parameters in conscious unrestrained subjects, including quantification of bronchoconstriction.
The standard plethysmograph sizes are for the study of mice, rats and guinea pigs. On request, larger plethysmographs can also be manufactured for other animals, such as rabbits, dogs, pigs, or primates.
The plethysmograph has two chambers, each fitted with a pneumotachograph. The subject is placed in one of them (subject chamber) and the other remains empty (reference chamber).
The pressure change is measured by a differential pressure transducer with one port exposed to the subject chamber and the other to the reference chamber. [8]
The double-chamber plethysmograph (dcp) measures respiratory parameters in a conscious restrained subject, including airway resistance and conductance. Different sizes of plethysmograph exist to study mice, rats or guinea pigs.
The head-out configuration is identical to the standard configuration described above except that there is no head chamber.
Of course the collar seal[ further explanation needed ] is still applied, so that the body chamber remains airtight. With only a thoracic signal, all parameters can be obtained except for specific airway resistance (SRaw) and specific airway conductance (Sgaw).
In anesthetized plethysmography, lung resistance and dynamic compliance are measured directly because the subject is anesthetized.
Depending on the level of sedation, the subject may be spontaneously breathing (SB configuration) or under mechanical ventilation (MV configuration). A flow signal and a pressure signal are required to calculate compliance and resistance.
Cerebral venous blood flow has been recently studied trying to establish a connection between Chronic cerebrospinal venous insufficiency and multiple sclerosis. The small study is not big enough to establish a conclusion, but some association has been shown. [9]
Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases, and evidence of increased work of breathing. Respiratory failure causes an altered state of consciousness due to ischemia in the brain.
Mechanical ventilation or assisted ventilation is the medical term for using a ventilator machine to fully or partially provide artificial ventilation. Mechanical ventilation helps move air into and out of the lungs, with the main goal of helping the delivery of oxygen and removal of carbon dioxide. Mechanical ventilation is used for many reasons, including to protect the airway due to mechanical or neurologic cause, to ensure adequate oxygenation, or to remove excess carbon dioxide from the lungs. Various healthcare providers are involved with the use of mechanical ventilation and people who require ventilators are typically monitored in an intensive care unit.
Lung volumes and lung capacities refer to the volume of air in the lungs at different phases of the respiratory cycle.
A spirometer is an apparatus for measuring the volume of air inspired and expired by the lungs. A spirometer measures ventilation, the movement of air into and out of the lungs. The spirogram will identify two different types of abnormal ventilation patterns, obstructive and restrictive. There are various types of spirometers that use a number of different methods for measurement.
Exhalation is the flow of the breath out of an organism. In animals, it is the movement of air from the lungs out of the airways, to the external environment during breathing. This happens due to elastic properties of the lungs, as well as the internal intercostal muscles which lower the rib cage and decrease thoracic volume. As the thoracic diaphragm relaxes during exhalation it causes the tissue it has depressed to rise superiorly and put pressure on the lungs to expel the air. During forced exhalation, as when blowing out a candle, expiratory muscles including the abdominal muscles and internal intercostal muscles generate abdominal and thoracic pressure, which forces air out of the lungs.
Pulmonology, pneumology or pneumonology is a medical specialty that deals with diseases involving the respiratory tract. It is also known as respirology, respiratory medicine, or chest medicine in some countries and areas.
Spirometry is the most common of the pulmonary function tests (PFTs). It measures lung function, specifically the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled. Spirometry is helpful in assessing breathing patterns that identify conditions such as asthma, pulmonary fibrosis, cystic fibrosis, and COPD. It is also helpful as part of a system of health surveillance, in which breathing patterns are measured over time.
Optoelectronic plethysmography is a method to evaluate ventilation through an external measurement of the chest wall surface motion.
Chest physiotherapy (CPT) are treatments generally performed by physical therapists and respiratory therapists, whereby breathing is improved by the indirect removal of mucus from the breathing passages of a patient. Other terms include respiratory or cardio-thoracic physiotherapy.
An incentive spirometer is a handheld medical device used to help patients improve the functioning of their lungs. By training patients to take slow and deep breaths, this simplified spirometer facilitates lung expansion and strengthening. Patients inhale through a mouthpiece, which causes a piston inside the device to rise. This visual feedback helps them monitor their inspiratory effort. Incentive spirometers are commonly used after surgery or certain illnesses to prevent pulmonary complications.
In respiratory physiology, airway resistance is the resistance of the respiratory tract to airflow during inhalation and exhalation. Airway resistance can be measured using plethysmography.
Lung compliance, or pulmonary compliance, is a measure of the lung's ability to stretch and expand. In clinical practice it is separated into two different measurements, static compliance and dynamic compliance. Static lung compliance is the change in volume for any given applied pressure. Dynamic lung compliance is the compliance of the lung at any given time during actual movement of air.
Pulmonary function testing (PFT) is a complete evaluation of the respiratory system including patient history, physical examinations, and tests of pulmonary function. The primary purpose of pulmonary function testing is to identify the severity of pulmonary impairment. Pulmonary function testing has diagnostic and therapeutic roles and helps clinicians answer some general questions about patients with lung disease. PFTs are normally performed by a pulmonary function technologist, respiratory therapist, respiratory physiologist, physiotherapist, pulmonologist, or general practitioner.
A pulmonary contusion, also known as lung contusion, is a bruise of the lung, caused by chest trauma. As a result of damage to capillaries, blood and other fluids accumulate in the lung tissue. The excess fluid interferes with gas exchange, potentially leading to inadequate oxygen levels (hypoxia). Unlike pulmonary laceration, another type of lung injury, pulmonary contusion does not involve a cut or tear of the lung tissue.
Pulmonary hygiene, also referred to as pulmonary toilet, is a set of methods used to clear mucus and secretions from the airways. The word pulmonary refers to the lungs. The word toilet, related to the French toilette, refers to body care and hygiene; this root is used in words such as toiletry that also relate to cleansing.
Pulmonary rehabilitation, also known as respiratory rehabilitation, is an important part of the management and health maintenance of people with chronic respiratory disease who remain symptomatic or continue to have decreased function despite standard medical treatment. It is a broad therapeutic concept. It is defined by the American Thoracic Society and the European Respiratory Society as an evidence-based, multidisciplinary, and comprehensive intervention for patients with chronic respiratory diseases who are symptomatic and often have decreased daily life activities. In general, pulmonary rehabilitation refers to a series of services that are administered to patients of respiratory disease and their families, typically to attempt to improve the quality of life for the patient. Pulmonary rehabilitation may be carried out in a variety of settings, depending on the patient's needs, and may or may not include pharmacologic intervention.
Structured Light Plethysmography (SLP) technology is a noninvasive method for collecting accurate representations of chest and abdominal wall movement. A checkerboard pattern of light is projected from a light projector onto the chest of an individual. Movements of the grid are viewed by two digital cameras, digitalised, and processed to form a 3D model and can be interrogated to assess lung function. The system has been tested on over 70 adults. SLP is simple to use, accurate and cost effective, is self-calibrating and does not require the use of plastic consumables, reducing cost, risk of cross infection and the device's carbon footprint. In conjunction with the Cambridge Veterinary School, proof of concept studies have indicated that the device is sensitive enough to noninvasively pick up respiratory movements in domestic animals.
Respiratory inductance plethysmography (RIP) is a method of evaluating pulmonary ventilation by measuring the movement of the chest and abdominal wall.
Modes of mechanical ventilation are one of the most important aspects of the usage of mechanical ventilation. The mode refers to the method of inspiratory support. In general, mode selection is based on clinician familiarity and institutional preferences, since there is a paucity of evidence indicating that the mode affects clinical outcome. The most frequently used forms of volume-limited mechanical ventilation are intermittent mandatory ventilation (IMV) and continuous mandatory ventilation (CMV). There have been substantial changes in the nomenclature of mechanical ventilation over the years, but more recently it has become standardized by many respirology and pulmonology groups. Writing a mode is most proper in all capital letters with a dash between the control variable and the strategy.
quantium Medical Cardiac Output (qCO) uses impedance cardiography in a simple, continuous, and non-invasive way to estimate the cardiac output (CO) and other hemodynamic parameters such as the stroke volume (SV) and cardiac index (CI). The CO estimated by the qCO monitor is referred to as the "qCO". The impedance plethysmography allows determining changes in volume of the body tissues based on the measurement of the electric impedance at the body surface.
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: others (link){{citation}}
: CS1 maint: DOI inactive as of November 2024 (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)