Predictive intake modelling

Last updated

Predictive intake modelling uses mathematical modelling strategies to estimate intake of food, personal care products, and their formulations.

Contents

Definition

Predictive intake modelling seeks to estimate intake of products and/or their constituents which may enter the body through various routes such as ingestion, inhalation and absorption.

Predictive intake modelling can be applied to determine trends in food consumption and product use for the purpose of extrapolation.

Applications

A predictive intake modelling approach is used to estimate voluntary food intake (VFI) by animals where their eating habits cannot be exactly measured. [1] [2] For humans, predictive intake modelling is used to make estimations of intake from foods, [3] pesticides, [4] cosmetics [5] and inhalants [6] as well as substances that can be contained in these like nutrients, functional ingredients, chemicals and contaminants.

Predictive intake modelling has applications in public health, risk assessment and exposure assessment, where estimating intake or exposure to different substances can influence the decision making process.

Predictive intake modelling strategies

Regression approach

The regression analysis approach is based on estimations through extrapolation or interpolation where there is a cause-and-effect relationship found by data fitting. These trends tend to be phenomenological.

Mechanistic modelling approach

A mechanistic modelling approach is one where a model is derived from basic theory. Examples of these include compartmental models which can be used to describe the circulation and concentration of airborne particles in a room or household for estimating intake of inhalants. [7]

Population-based approach

A population-based approach tracks consumer intake from individual members of a sample population over time. Mathematical models are used to combine these habits and practices databases with separate databases on product or food formulation to estimate intake or exposure for the sample population. Moreover, survey weights may be applied to each subject in the study based on their age, demographic and location allowing the sample of subjects to correctly represent an entire population, and thus estimate intake for that population.

Probabilistic modelling approach

Probabilistic models are based on the Monte Carlo method where distributions of data from various sources are randomly sampled from to calculate percentile statistics. Such probabilistic techniques typically utilise product or consumption survey data from a sample population combined with distributions of substances that may be found within those foods or products. For example, The Food and Drug Administration (FDA) suggest that the estimation of intake of substances in food can be probabilistically conducted through food consumption surveys (NHANES/CSFII) from sample populations combined with distributions of substance concentration data to calculate the Estimated Daily Intake. [8] The European Food Safety Authority (EFSA) funded the Monte Carlo Risk Assessment (MCRA) tool to estimate usual intake exposure distributions based on statistical models which utilise the EFSA Comprehensive Database, which contains detailed food consumption survey data. [9] EFSA also funded Creme Global to develop a model and databases of European food consumption on which statistical models can be run to assess intake and exposure on a pan-European basis. [10] [11]

See also

Related Research Articles

Aspartame artificial non-saccharide sweetener

Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose, and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with the trade names NutraSweet, Equal, and Canderel. Aspartame was first made in 1965 and approved for use in food products by the U.S. Food and Drug Administration (FDA) in 1981.

Inhalant

Inhalants are a broad range of household and industrial chemicals whose volatile vapors or pressurized gases can be concentrated and breathed in via the nose or mouth to produce intoxication, in a manner not intended by the manufacturer. They are inhaled at room temperature through volatilization or from a pressurized container, and do not include drugs that are sniffed after burning or heating. For example, amyl nitrite (poppers), nitrous oxide and toluene – a solvent widely used in contact cement, permanent markers, and certain types of glue – are considered inhalants, but smoking tobacco, cannabis, and crack are not, even though these drugs are inhaled as smoke.

Acrylamide (or acrylic amide) is an organic compound with the chemical formula CH2=CHC(O)NH2. It is a white odorless solid, soluble in water and several organic solvents. It is produced industrially as a precursor to polyacrylamides, which find many uses as water-soluble thickeners and flocculation agents. It is highly toxic, likely to be carcinogenic, and partly for that reason it is mainly handled as an aqueous solution.

Dietary supplement Product that provides additional source of nutrients

A dietary supplement is a manufactured product intended to supplement one's diet by taking a pill, capsule, tablet, powder or liquid. A supplement can provide nutrients either extracted from food sources or that are synthetic in order to increase the quantity of their consumption. The class of nutrient compounds includes vitamins, minerals, fiber, fatty acids and amino acids. Dietary supplements can also contain substances that have not been confirmed as being essential to life, but are marketed as having a beneficial biological effect, such as plant pigments or polyphenols. Animals can also be a source of supplement ingredients, such as collagen from chickens or fish for example. These are also sold individually and in combination, and may be combined with nutrient ingredients. In the United States and Canada, dietary supplements are considered a subset of foods, and are regulated accordingly. The European Commission has also established harmonized rules to help insure that food supplements are safe and properly labeled.

A biocide is defined in the European legislation as a chemical substance or microorganism intended to destroy, deter, render harmless, or exert a controlling effect on any harmful organism. The US Environmental Protection Agency (EPA) uses a slightly different definition for biocides as "a diverse group of poisonous substances including preservatives, insecticides, disinfectants, and pesticides used for the control of organisms that are harmful to human or animal health or that cause damage to natural or manufactured products". When compared, the two definitions roughly imply the same, although the US EPA definition includes plant protection products and some veterinary medicines.

Acesulfame potassium chemical compound

Acesulfame potassium, also known as acesulfame K or Ace K, is a calorie-free sugar substitute often marketed under the trade names Sunett and Sweet One. In the European Union, it is known under the E number E950. It was discovered accidentally in 1967 by German chemist Karl Clauss at Hoechst AG. In chemical structure, acesulfame potassium is the potassium salt of 6-methyl-1,2,3-oxathiazine-4(3H)-one 2,2-dioxide. It is a white crystalline powder with molecular formula C
4
H
4
KNO
4
S
and a molecular weight of 201.24 g/mol.

The Dietary Reference Intake (DRI) is a system of nutrition recommendations from the Institute of Medicine (IOM) of the National Academies. It was introduced in 1997 in order to broaden the existing guidelines known as Recommended Dietary Allowances. The DRI values differ from those used in nutrition labeling on food and dietary supplement products in the U.S. and Canada, which uses Reference Daily Intakes (RDIs) and Daily Values (%DV) which were based on outdated RDAs from 1968 but were updated as of 2016.

Tartrazine

Tartrazine is a synthetic lemon yellow azo dye primarily used as a food coloring. It is also known as E number E102, C.I. 19140, FD&C Yellow 5, Acid Yellow 23, Food Yellow 4, and trisodium 1-(4-sulfonatophenyl)-4-(4-sulfonatophenylazo)-5-pyrazolone-3-carboxylate).

Sunset Yellow FCF Chemical compound used as colorant

Sunset Yellow FCF is a petroleum-derived orange azo dye with a pH dependent maximum absorption at about 480 nm at pH 1 and 443 nm at pH 13 with a shoulder at 500 nm. When added to foods sold in the United States it is known as FD&C Yellow 6; when sold in Europe, it is denoted by E Number E110.

Ponceau 4R

Ponceau 4R (known by more than 100 synonyms, including as C.I. 16255, Cochineal Red A, C.I. Acid Red 18, Brilliant Scarlet 3R, Brilliant Scarlet 4R, New Coccine, is a synthetic colourant that may be used as a food colouring. It is denoted by E Number E124. Its chemical name is 1- -2-napthol-6,8-disulfonic acid, trisodium salt. Ponceau is the generic name for a family of azo dyes.

Allura Red AC

Allura Red AC is a red azo dye that goes by several names, including FD&C Red 40. It is used as a food dye and has the E number E129.

Diphenylamine

Diphenylamine is an organic compound with the formula (C6H5)2NH. The compound is a derivative of aniline, consisting of an amine bound to two phenyl groups. The compound is a colorless solid, but commercial samples are often yellow due to oxidized impurities. Diphenylamine dissolves well in many common organic solvents, and is moderately soluble in water. It is used mainly for its antioxidant properties. Diphenylamine is widely used as an industrial antioxidant, dye mordant and reagent and is also employed in agriculture as a fungicide and antihelmintic.

Benzene in soft drinks is of potential concern due to the carcinogenic nature of the benzene molecule. This contamination is a public health concern and has caused significant outcry among environmental and health advocates. Benzene levels are regulated in drinking water nationally and internationally, and in bottled water in the United States, but only informally in soft drinks. The benzene forms from decarboxylation of the preservative benzoic acid in the presence of ascorbic acid and metal ions that act as catalysts, especially under heat and light.

Exposure assessment is a branch of environmental science and occupational hygiene that focuses on the processes that take place at the interface between the environment containing the contaminant of interest and the organism being considered. These are the final steps in the path to release an environmental contaminant, through transport to its effect in a biological system. It tries to measure how much of a contaminant can be absorbed by an exposed target organism, in what form, at what rate and how much of the absorbed amount is actually available to produce a biological effect. Although the same general concepts apply to other organisms, the overwhelming majority of applications of exposure assessment are concerned with human health, making it an important tool in public health.

Patulin is an organic compound classified as a polyketide. It is a white powder soluble in acidic water and in organic solvents. It is a lactone that is heat-stable, so it is not destroyed by pasteurization or thermal denaturation. However, stability following fermentation is lessened. It is a mycotoxin produced by a variety of molds, in particular, Aspergillus and Penicillium and Byssochlamys. Most commonly found in rotting apples, the amount of patulin in apple products is generally viewed as a measure of the quality of the apples used in production. In addition, patulin has been found in other foods such as grains, fruits, and vegetables. Its presence is highly regulated.

Tetrabromobisphenol A

Tetrabromobisphenol A (TBBPA) is a brominated flame retardant. The compound is a white solid, although commercial samples appear yellow. It is one of the most common fire retardants.

Internal dosimetry is the science and art of internal ionising radiation dose assessment due to radionuclides incorporated inside the human body.

Dietary exposure assessments involve the evaluation of dietary consumption and chemical residue data while taking into consideration additional factors that may affect a specified population of interest or sensitive population. The process of conducting a dietary exposure assessment involves the determination of the chemical residues on a particular food or foods and the calculation of the dietary exposure to these chemicals based on consumption data for the specified food or foods. In the most simplified form, a dietary exposure assessment can be summarized with the following calculation:

In toxicology, the margin of exposure of a substance is the ratio of its no-observed-adverse-effect level to its theoretical, predicted, or estimated dose or concentration of human intake. It is used in risk assessment to determine the dangerousness of substances that are both genotoxic and carcinogenic. This approach is preferred by both the World Health Organization and the European Food Safety Authority for the evaluation of the risk of carcinogens.

Regulation of pesticides in the European Union

A pesticide, also called Plant Protection Product (PPP), which is a term used in regulatory documents, consists of several different components. The active ingredient in a pesticide is called “active substance” and these active substances either consist of chemicals or micro-organisms. The aims of these active substances are to specifically take action against organisms that are harmful to plants. In other words, active substances are the active components against pests and plant diseases.

References

  1. Hackmann T. J.; Spain J. N. (2010). "A mechanistic model for predicting intake of forage diets by ruminants". Journal of Animal Science. 88 (3): 1108–24. doi:10.2527/jas.2008-1378.
  2. Yoosuk S.; Ong H. B.; Roan S. W.; Whittemore C. T. (2011). "A simulation model for predicting the voluntary feed intake of a growing pig". Acta Agriculturae Scandinavica, Section A. 61 (4): 168–186. doi:10.1080/09064702.2011.642000.
  3. H. G. Schutz, 1982 "Prediction of nutritional status from food consumption and consumer attitude data.," The American Journal of Clinical Nutrition vol. 35, no. 5 Suppl, pp. 1310–8
  4. P. Shade and P. Georgopoulos, "Using inhalation dosimetry models to predict deposition of ultrafine particles," Ozobe Research Centre Science Workshop January 26, 2007, 2007. [Online]. Available: http://ccl.rutgers.edu/ccl-files/presentations/2007-01-26_ORC-Workshop-at-DEP/ShadePamela_ORC-NJDEP_poster_2007.01.26.pdf. [Accessed: 27-Nov-2013]
  5. Grégoire S.; Ribaud C.; Benech F.; Meunier J. R.; Guy R. H. (2009). "Prediction of chemical absorption into and through the skin from cosmetic and dermatological formulations". The British Journal of Dermatology. 160 (1): 80–91. doi:10.1111/j.1365-2133.2008.08866.x.
  6. Hemmen J. J. Van (1993). "Predictive exposure modelling for pesticide registration purposes". Annals of Occupational Hygiene. 37 (5): 541–564.
  7. M. Singal, "RIFM 2-Box Indoor Air Dispersion Model Is An Alternative Method To Calculate Inhalation Exposure To Fragrance," Research Institute for Fragrance Materials, 2012. [Online]. Available: http://www.rifm.org/press-detail.php?id=68. [Accessed: 28-Nov-2013]
  8. FDA, "Guidance for Industry: Estimating Dietary Intake of Substances in Food," 2006. [Online]. Available: https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/IngredientsAdditivesGRASPackaging/ucm074725.htm#mode. [Accessed: 24-Feb-2014].
  9. J. D. van Klaverena, P. W. Goedhartb, D. Wapperoma, and H. van der Voet, "A European tool for usual intake distribution estimation in relation to data collection by EFSA," Bilthoven, 2012.
  10. Vilone G.; Comiskey D; Heraud F; O'Mahony C (2014). "Statistical method to assess usual dietary intakes in the European population". Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 31 (10): 1639–51. doi:10.1080/19440049.2014.955886.
  11. C. O'Mahony, and G. Vilone, "Compiled European Food Consumption Database," Supporting Publications 2013:EN-415. [31 pp.]. Available online: www.efsa.europa.eu/publications [Accessed: 03-March-2015]