Immediately dangerous to life or health

Last updated
Personal protective equipment for IDLH conditions: pressure-demand supplied-air respirator equipped with a full facepiece in combination with an auxiliary pressure-demand self-contained breathing apparatus Kombinirovannyi SIZOD ShR i ADA.jpg
Personal protective equipment for IDLH conditions: pressure-demand supplied-air respirator equipped with a full facepiece in combination with an auxiliary pressure-demand self-contained breathing apparatus

The term immediately dangerous to life or health (IDLH) is defined by the US National Institute for Occupational Safety and Health (NIOSH) as exposure to airborne contaminants that is "likely to cause death or immediate or delayed permanent adverse health effects or prevent escape from such an environment." Examples include smoke or other poisonous gases at sufficiently high concentrations. It is calculated using the LD50 or LC50. [1] The Occupational Safety and Health Administration (OSHA) regulation (1910.134(b)) defines the term as "an atmosphere that poses an immediate threat to life, would cause irreversible adverse health effects, or would impair an individual's ability to escape from a dangerous atmosphere." [2]

Contents

IDLH values are often used to guide the selection of breathing apparatus that are made available to workers or firefighters in specific situations. [1]

The NIOSH definition does not include oxygen deficiency (below 19.5%) although atmosphere-supplying breathing apparatus is also required. [3] Examples include high altitudes and unventilated, confined spaces.

The OSHA definition is arguably broad enough to include oxygen-deficient circumstances in the absence of "airborne contaminants", as well as many other chemical, thermal, or pneumatic hazards to life or health (e.g., pure helium, super-cooled or super-heated air, hyperbaric or hypo-baric or submerged chambers, etc.). It also uses the broader term "impair", rather than "prevent", with respect to the ability to escape. For example, blinding but non-toxic smoke could be considered IDLH under the OSHA definition if it would impair the ability to escape a "dangerous" but not life-threatening atmosphere (such as tear gas).

The OSHA definition is part of a legal standard, which is the minimum legal requirement. Users or employers are encouraged to apply proper judgment to avoid taking unnecessary risks, even if the only immediate hazard is "reversible", such as temporary pain, disorientation, nausea, or non-toxic contamination.

NIOSH respirator selection logic

Personal protective equipment for IDLH conditions: pressure-demand self-contained breathing apparatus with a full facepiece TFS SCBA gear.jpg
Personal protective equipment for IDLH conditions: pressure-demand self-contained breathing apparatus with a full facepiece

If the concentration of harmful substances is IDLH, the worker must use the most reliable respirators. Such respirators should not use cartridges or canister with the sorbent, as their lifetime is too poorly predicted. In addition, the respirator must maintain positive pressure under the mask during inspiration, as this will prevent the leakage of unfiltered air through the gaps (which occur between the edges of the mask and the face sometimes).

Textbook NIOSH [4] recommended for use in IDLH conditions only pressure-demand self-contained breathing apparatus with a full facepiece, or pressure-demand supplied-air respirator equipped with a full facepiece in combination with an auxiliary pressure-demand self-contained breathing apparatus.

IDLH values

The following examples are listed in reference to IDLH values. [3]

Legend: [5]

Ca
NIOSH considers this substance to be a potential occupational carcinogen. Revised values may follow in parentheses.
N.D.
Not determined. That is, the level is unknown, not non-existent.
10%LEL
The IDLH value has been set at 10% of the lower explosive limit although other irreversible health effects or impairment of escape due to toxicology exist only at higher levels.

See also

Related Research Articles

<span class="mw-page-title-main">Personal protective equipment</span> Equipment designed to help protect an individual from hazards

Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, electrical, heat, chemical, biohazards, and airborne particulate matter. Protective equipment may be worn for job-related occupational safety and health purposes, as well as for sports and other recreational activities. Protective clothing is applied to traditional categories of clothing, and protective gear applies to items such as pads, guards, shields, or masks, and others. PPE suits can be similar in appearance to a cleanroom suit.

<span class="mw-page-title-main">Octane</span> Hydrocarbon compound with the formula C8H18

Octane is a hydrocarbon and an alkane with the chemical formula C8H18, and the condensed structural formula CH3(CH2)6CH3. Octane has many structural isomers that differ by the location of branching in the carbon chain. One of these isomers, 2,2,4-trimethylpentane (commonly called iso-octane), is used as one of the standard values in the octane rating scale.

<span class="mw-page-title-main">Self-contained breathing apparatus</span> Breathing gas supply system carried by the user

A self-contained breathing apparatus (SCBA) is a device worn to provide an autonomous supply of breathable gas in an atmosphere that is immediately dangerous to life or health. They are typically used in firefighting and industry. The term self-contained means that the SCBA is not dependent on a remote supply of breathing gas. They are sometimes called industrial breathing sets. Some types are also referred to as a compressed air breathing apparatus (CABA) or simply breathing apparatus (BA). Unofficial names include air pack, air tank, oxygen cylinder or simply pack, terms used mostly in firefighting. If designed for use under water, it is also known as a scuba set.

The permissible exposure limit is a legal limit in the United States for exposure of an employee to a chemical substance or physical agent such as high level noise. Permissible exposure limits were established by the Occupational Safety and Health Administration (OSHA). Most of OSHA's PELs were issued shortly after adoption of the Occupational Safety and Health (OSH) Act in 1970.

<span class="mw-page-title-main">Respirator</span> Device worn to protect the user from inhaling contaminants

A respirator is a device designed to protect the wearer from inhaling hazardous atmospheres including fumes, vapours, gases and particulate matter such as dusts and airborne pathogens such as viruses. There are two main categories of respirators: the air-purifying respirator, in which respirable air is obtained by filtering a contaminated atmosphere, and the air-supplied respirator, in which an alternate supply of breathable air is delivered. Within each category, different techniques are employed to reduce or eliminate noxious airborne contaminants.

<span class="mw-page-title-main">Confined space</span> Space with limited entry and egress and not suitable for human inhabitants

A confined space is a space with limited entry and egress and not suitable for human inhabitants. An example is the interior of a storage tank, occasionally entered by maintenance workers but not intended for human occupancy. Hazards in a confined space often include harmful dust or gases, asphyxiation, submersion in liquids or free-flowing granular solids, electrocution, or entrapment.

<span class="mw-page-title-main">Hydrogen selenide</span> Chemical compound

Hydrogen selenide is an inorganic compound with the formula H2Se. This hydrogen chalcogenide is the simplest and most commonly encountered hydride of selenium. H2Se is a colorless, flammable gas under standard conditions. It is the most toxic selenium compound with an exposure limit of 0.05 ppm over an 8-hour period. Even at extremely low concentrations, this compound has a very irritating smell resembling that of decayed horseradish or "leaking gas", but smells of rotten eggs at higher concentrations.

<span class="mw-page-title-main">Self-contained self-rescue device</span>

A self-contained self-rescue device, SCSR, self-contained self-rescuer, or air pack is a type of closed-circuit SCBA with a portable oxygen source for providing breathable air when the surrounding atmosphere lacks oxygen or is contaminated with toxic gases, e.g. carbon monoxide.

<span class="mw-page-title-main">Escape breathing apparatus</span> Self contained breathing apparatus providing gas to escape from a hazardous environment

Escape breathing apparatus, also called escape respirators, escape sets, self-rescuer masks, emergency life saving apparatus (ELSA), emergency escape breathing devices (EEBD), and Respiratory Protective Smoke Escape Devices (RPED), are portable breathing apparatus that provide the wearer with respiratory protection for a limited period, intended for escape from or through an environment where there is no breathable ambient atmosphere. This includes escape through water and in areas containing harmful gases or fumes or other atmospheres immediately dangerous to life or health (IDLH).

<span class="mw-page-title-main">2-Ethoxyethanol</span> Chemical compound

2-Ethoxyethanol, also known by the trademark Ethyl cellosolve, is a solvent used widely in commercial and industrial applications. It is a clear, colorless, nearly odorless liquid that is miscible with water, ethanol, diethyl ether, acetone, and ethyl acetate.

Inhalation is a major route of exposure that occurs when an individual breathes in polluted air which enters the respiratory tract. Identification of the pollutant uptake by the respiratory system can determine how the resulting exposure contributes to the dose. In this way, the mechanism of pollutant uptake by the respiratory system can be used to predict potential health impacts within the human population.

<span class="mw-page-title-main">Respirator fit test</span> Safety procedure for testing PPE air-tightness

A respirator fit test checks whether a respirator properly fits the face of someone who wears it. The fitting characteristic of a respirator is the ability of the mask to separate a worker's respiratory system from ambient air.

<span class="mw-page-title-main">Chemical cartridge</span> Container that cleans pollution from air inhaled through it

A respirator cartridge or canister is a type of filter that removes gases, volatile organic compounds (VOCs), and other vapors from air through adsorption, absorption, or chemisorption. It is one of two basic types of filters used by air-purifying respirators. The other is a mechanical filter, which removes only particulates. Hybrid filters combine the two.

<span class="mw-page-title-main">Powered air-purifying respirator</span> Full-face respirator that provides filtered air to the wearer using an electric fan

A powered air-purifying respirator (PAPR) is a type of respirator used to safeguard workers against contaminated air. PAPRs consist of a headgear-and-fan assembly that takes ambient air contaminated with one or more type of pollutant or pathogen, actively removes (filters) a sufficient proportion of these hazards, and then delivers the clean air to the user's face or mouth and nose. They have a higher assigned protection factor than filtering facepiece respirators such as N95 masks. PAPRs are sometimes called positive-pressure masks, blower units, or just blowers.

<span class="mw-page-title-main">Respirator assigned protection factors</span>

The respiratory protective devices (RPD) can protect workers only if their protective properties are adequate to the conditions in the workplace. Therefore, specialists have developed criteria for the selection of proper, adequate respirators, including the Assigned Protection Factors (APF) - the decrease of the concentration of harmful substances in the inhaled air, which to be provided with timely and proper use of a certified respirator of certain types (design) by taught and trained workers, when the employer performs an effective respiratory protective device programme.

<span class="mw-page-title-main">Workplace respirator testing</span> Testing of respirators in real life conditions

Respirators, also known as respiratory protective equipment (RPE) or respiratory protective devices (RPD), are used in some workplaces to protect workers from air contaminants. Initially, respirator effectiveness was tested in laboratories, but in the late 1960s it was found that these tests gave misleading results regarding the level of protection provided. In the 1970s, workplace-based respirator testing became routine in industrialized countries, leading to a dramatic reduction in the claimed efficacy of many respirator types and new guidelines on how to select the appropriate respirator for a given environment.

<span class="mw-page-title-main">N95 respirator</span> Particulate respirator meeting the N95 standard

An N95 respirator is a filtering facepiece respirator or elastomeric filter that meets the U.S. National Institute for Occupational Safety and Health (NIOSH) N95 classification of air filtration, meaning that it filters at least 95% of airborne particles that have a mass median aerodynamic diameter of 0.3 micrometers under 42 CFR Part 84, effective July 10, 1995. This standard does not require that the respirator be resistant to oil; two other standards, R95 and P95, add that requirement. The N95 type is the most common filtering facepiece respirator. It is an example of a mechanical filter respirator, which provides protection against particulates but not against gases or vapors. An authentic N95 respirator is marked with the text "NIOSH" or the NIOSH logo, the filter class ("N95"), and, for filtering facepiece respirators, a "TC" approval number of the form 84A-####, the approval number. All N95 respirators, regardless of type, must be listed on the NIOSH Certified Equipment List (CEL) or the NIOSH Trusted-Source page, and it must have headbands instead of ear loops.

<span class="mw-page-title-main">Elastomeric respirator</span> Respirator with a rubber face seal

Elastomeric respirators, also called reusable air-purifying respirators, seal to the face with elastomeric material, which may be a natural or synthetic rubber. They are generally reusable. Full-face versions of elastomeric respirators seal better and protect the eyes.

<span class="mw-page-title-main">Supplied-air respirator</span> Breathing apparatuus remotely supplied by an air hose

A supplied-air respirator (SAR) or air-line respirator is a breathing apparatus used in places where the ambient air may not be safe to breathe. It uses an air hose to supply air from outside the danger zone. It is similar to a self-contained breathing apparatus (SCBA), except that SCBA users carry their air with them in high pressure cylinders, while SAR users get it from a remote stationary air supply connected to them by a hose.

<span class="mw-page-title-main">Glossary of breathing apparatus terminology</span> Definitions of technical terms used in connection with breathing apparatus

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

References

  1. 1 2 "Immediately Dangerous To Life or Health (IDLH) Introduction". NIOSH. 4 December 2014. Archived from the original on 18 September 2017.
  2. "Occupational Safety and Health Standards". Occupational Safety & Health Administration. Archived from the original on 9 July 2012. Retrieved 7 July 2012.
  3. 1 2 "Chemical Listing and Documentation of Revised IDLH Values". NIOSH Publications and Products. Centers for Disease Control and Prevention. Archived from the original on 17 November 2012. Retrieved 7 July 2012.
  4. Bollinger, Nancy; et al. (1987). NIOSH Respirator Selecion Logic. DHHS (NIOSH) Publication No. 87-108. Cincinnati, OH: National Institute for Occupational Safety and Health. p. 32. doi:10.26616/NIOSHPUB2005100. Archived from the original on 23 June 2017.
  5. "CDC - NIOSH Pocket Guide to Chemical Hazards (NPG) Introduction". www.cdc.gov. 2 December 2019. Archived from the original on 10 December 2017.
  6. "Benzyl Chloride | Technology Transfer Network Air Toxics Web site | US EPA". Archived from the original on 2014-07-12. Retrieved 2014-08-17.
  7. "Dimethyl Sulfate | Technology Transfer Network Air Toxics Web site | US EPA". Archived from the original on 2012-05-11. Retrieved 2012-05-03.