Phenylhydrazine

Last updated
Phenylhydrazine [1] [2]
Phenylhydrazine.png
Ball-and-stick model of phenylhydrazine Phenylhydrazine-from-xtal-3D-bs-17.png
Ball-and-stick model of phenylhydrazine
Space-filling model of phenylhydrazine Phenylhydrazine-from-xtal-3D-sf.png
Space-filling model of phenylhydrazine
Names
Preferred IUPAC name
Phenylhydrazine
Other names
Hydrazinobenzene
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.612 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C6H8N2/c7-8-6-4-2-1-3-5-6/h1-5,8H,7H2 Yes check.svgY
    Key: HKOOXMFOFWEVGF-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H8N2/c7-8-6-4-2-1-3-5-6/h1-5,8H,7H2
    Key: HKOOXMFOFWEVGF-UHFFFAOYAN
  • NNc1ccccc1
Properties
C6H5NHNH2
Molar mass 108.144 g·mol−1
AppearanceColorless to pale-yellow liquid or solid [3]
Odor faint, aromatic [3]
Density 1.0978 g/cm3
Melting point 19.5 °C (67.1 °F; 292.6 K) (24 °C for hemihydrate)
Boiling point 243.5 °C (470.3 °F; 516.6 K) (decomposition)
Vapor pressure 0.04 mmHg (25°C) [3]
-67.82·10−6 cm3/mol
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazards (white): no code
3
2
3
Flash point 88 °C; 190 °F; 361 K [3]
Lethal dose or concentration (LD, LC):
  • 188 mg/kg (rat, oral)
  • 175 mg/kg (mouse, oral)
  • 80 mg/kg (rabbit, oral)
  • 80 mg/kg (guinea pig, oral)
  • 200-250 mg/kg (dog, oral)
[4]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 5 ppm (22 mg/m3) [skin] [3]
REL (Recommended)
Ca C 0.14 ppm (0.6 mg/m3) [2-hr] [skin] [3]
IDLH (Immediate danger)
Ca [15 ppm] [3]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Phenylhydrazine is the chemical compound with the formula C6H5NHNH2. It is often abbreviated as PhNHNH2. It is also found in edible mushrooms. [5]

Contents

Properties

Phenylhydrazine forms monoclinic prisms that melt to an oil around room temperature which may turn yellow to dark red upon exposure to air. [1] Phenylhydrazine is miscible with ethanol, diethyl ether, chloroform and benzene. It is sparingly soluble in water.

Preparation

Phenylhydrazine is prepared by reacting aniline with sodium nitrite in the presence of hydrogen chloride to form the diazonium salt, which is subsequently reduced using sodium sulfite in the presence of sodium hydroxide to form the final product. [6]

History

Phenylhydrazine was the first hydrazine derivative characterized, reported by Hermann Emil Fischer in 1875. [7] [8] He prepared it by reduction of a phenyl diazonium salt using sulfite salts. Fischer used phenylhydrazine to characterize sugars via formation of hydrazones known as osazones with the sugar aldehyde. He also demonstrated in this first paper many of the key properties recognized for hydrazines.

Uses

Phenylhydrazine is used to prepare indoles by the Fischer indole synthesis, which are intermediates in the synthesis of various dyes and pharmaceuticals.

Phenylhydrazine is used to form phenylhydrazones of natural mixtures of simple sugars in order to render the differing sugars easily separable from each other. [9]

This molecule is also used to induce acute hemolytic anemia in animal models.

Safety

Exposure to phenylhydrazine may cause contact dermatitis, hemolytic anemia, and liver damage. [1]

Related Research Articles

<span class="mw-page-title-main">Hydrazine</span> Colorless flammable liquid with an ammonia-like odor

Hydrazine is an inorganic compound with the chemical formula N2H4. It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine hydrate.

<span class="mw-page-title-main">Naphthalene</span> Chemical compound

Naphthalene is an organic compound with formula C
10
H
8
. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass. As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings. It is the main ingredient of traditional mothballs.

<span class="mw-page-title-main">Butanone</span> Chemical compound

Butanone, also known as methyl ethyl ketone (MEK) or ethyl methyl ketone, is an organic compound with the formula CH3C(O)CH2CH3. This colorless liquid ketone has a sharp, sweet odor reminiscent of acetone. It is produced industrially on a large scale, but occurs in nature only in trace amounts. It is partially soluble in water, and is commonly used as an industrial solvent. It is an isomer of another solvent, tetrahydrofuran.

<span class="mw-page-title-main">Tetrahydrofuran</span> Cyclic chemical compound, (CH₂)₄O

Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent.

Monomethylhydrazine is a highly toxic, volatile hydrazine derivative with the chemical formula CH6N2. It is used as a rocket propellant in bipropellant rocket engines because it is hypergolic with various oxidizers such as nitrogen tetroxide and nitric acid. As a propellant, it is described in specification MIL-PRF-27404.

<span class="mw-page-title-main">Iodoform</span> Chemical compound

Iodoform is the organoiodine compound with the chemical formula CHI3. It is a pale yellow, crystalline, volatile substance, with a penetrating and distinctive odor and, analogous to chloroform, sweetish taste. It is occasionally used as a disinfectant.

<span class="mw-page-title-main">Emil Fischer</span> German chemist (1852–1919)

Hermann Emil Louis Fischer was a German chemist and 1902 recipient of the Nobel Prize in Chemistry. He discovered the Fischer esterification. He also developed the Fischer projection, a symbolic way of drawing asymmetric carbon atoms. He also hypothesized lock and key mechanism of enzyme action. He never used his first given name, and was known throughout his life simply as Emil Fischer.

The Fischer indole synthesis is a chemical reaction that produces the aromatic heterocycle indole from a (substituted) phenylhydrazine and an aldehyde or ketone under acidic conditions. The reaction was discovered in 1883 by Emil Fischer. Today antimigraine drugs of the triptan class are often synthesized by this method.

<span class="mw-page-title-main">Methylamine</span> Organic chemical compound

Methylamine is an organic compound with a formula of CH3NH2. This colorless gas is a derivative of ammonia, but with one hydrogen atom being replaced by a methyl group. It is the simplest primary amine.

<span class="mw-page-title-main">Ethyl acetate</span> Organic compound (CH₃CO₂CH₂CH₃)

Ethyl acetate is the organic compound with the formula CH3CO2CH2CH3, simplified to C4H8O2. This colorless liquid has a characteristic sweet smell and is used in glues, nail polish removers, and in the decaffeination process of tea and coffee. Ethyl acetate is the ester of ethanol and acetic acid; it is manufactured on a large scale for use as a solvent.

<span class="mw-page-title-main">Stibine</span> Chemical compound

Stibine (IUPAC name: stibane) is a chemical compound with the formula SbH3. A pnictogen hydride, this colourless, highly toxic gas is the principal covalent hydride of antimony, and a heavy analogue of ammonia. The molecule is pyramidal with H–Sb–H angles of 91.7° and Sb–H distances of 170.7 pm (1.707 Å). This gas has an offensive smell like hydrogen sulfide (rotten eggs).

<span class="mw-page-title-main">Dimethylamine</span> Chemical compound

Dimethylamine is an organic compound with the formula (CH3)2NH. This secondary amine is a colorless, flammable gas with an ammonia-like odor. Dimethylamine is commonly encountered commercially as a solution in water at concentrations up to around 40%. An estimated 270,000 tons were produced in 2005.

<span class="mw-page-title-main">Germane</span> Chemical compound

Germane is the chemical compound with the formula GeH4, and the germanium analogue of methane. It is the simplest germanium hydride and one of the most useful compounds of germanium. Like the related compounds silane and methane, germane is tetrahedral. It burns in air to produce GeO2 and water. Germane is a group 14 hydride.

<span class="mw-page-title-main">Thiophenol</span> Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols. An exception is the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

<span class="mw-page-title-main">2-Methoxyethanol</span> Chemical compound

2-Methoxyethanol, or methyl cellosolve, is an organic compound with formula C
3
H
8
O
2
that is used mainly as a solvent. It is a clear, colorless liquid with an ether-like odor. It is in a class of solvents known as glycol ethers which are notable for their ability to dissolve a variety of different types of chemical compounds and for their miscibility with water and other solvents. It can be formed by the nucleophilic attack of methanol on protonated ethylene oxide followed by proton transfer:

<span class="mw-page-title-main">1,2-Dichlorobenzene</span> Chemical compound

1,2-Dichlorobenzene, or orthodichlorobenzene (ODCB), is an aryl chloride and isomer of dichlorobenzene with the formula C6H4Cl2. This colourless liquid is poorly soluble in water but miscible with most organic solvents. It is a derivative of benzene, consisting of two adjacent chlorine atoms.

<span class="mw-page-title-main">1-Naphthylamine</span> Chemical compound

1-Naphthylamine is an aromatic amine derived from naphthalene. It can cause bladder cancer. It crystallizes in colorless needles which melt at 50 °C. It possesses a disagreeable odor, sublimes readily, and turns brown on exposure to air. It is the precursor to a variety of dyes.

<span class="mw-page-title-main">Copper(I) bromide</span> Chemical compound

Copper(I) bromide is the chemical compound with the formula CuBr. This diamagnetic solid adopts a polymeric structure akin to that for zinc sulfide. The compound is widely used in the synthesis of organic compounds and as a lasing medium in copper bromide lasers.

<span class="mw-page-title-main">Glycidol</span> Chemical compound

Glycidol is an organic compound that contains both epoxide and alcohol functional groups. Being bifunctional, it has a variety of industrial uses. The compound is a slightly viscous liquid that is slightly unstable and is not often encountered in pure form.

<span class="mw-page-title-main">Chloroacetaldehyde</span> Chemical compound

Chloroacetaldehyde is an organic compound with the formula ClCH2CHO. Like some related compounds, it is highly electrophilic reagent and a potentially dangerous alkylating agent. The compound is not normally encountered in the anhydrous form, but rather as the hemiacetal (ClCH2CH(OH))2O.

References

  1. 1 2 3 Merck Index, 11th Edition, 7264.
  2. Pure component properties
  3. 1 2 3 4 5 6 7 NIOSH Pocket Guide to Chemical Hazards. "#0499". National Institute for Occupational Safety and Health (NIOSH).
  4. "Phenylhydrazine". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. Andersson, H. C.; Gry, Jørn (2004). Phenylhydrazines in the cultivated mushroom (Agaricus bisporus). Nordic Council of Ministers. ISBN   9789289301978.
  6. Merck Index of Chemicals and Drugs, 9th ed. monograph 7098
  7. Nobel Committee Emil Fischer - Biographical
  8. Fischer, E. (1875) "Ueber aromatische Hydrazinverbindungen," Berichte der deutschen chemischen Gesellschaft, 8: 589-594.
  9. Andrew Streitwieser; Clayton Heathcock (1976). Introduction to Organic Chemistry . Macmillan. ISBN   0-02-418010-6.