Malignant pleural effusion

Last updated
Malignant pleural effusion
Specialty Oncology   OOjs UI icon edit-ltr-progressive.svg

Malignant pleural effusion is a condition in which cancer causes an abnormal amount of fluid to collect between the thin layers of tissue (pleura) lining the outside of the lung and the wall of the chest cavity. [1] Lung cancer and breast cancer account for about 50-65% of malignant pleural effusions. [2] [3] Other common causes include pleural mesothelioma and lymphoma.

Contents

Diagnosis

Clinical evaluation

Clinical factors predicting the diagnosis of malignant pleural effusions are symptoms lasting more than 1 month and the absence of fever. [4]

Imaging

Imaging is needed to confirm the presence of a pleural effusion. A Chest radiograph is usually performed first and may demonstrate an underlying lung cancer as well as the pleural effusion. Ultrasound has a sensitivity of 73% and specificity of 100% at distinguishing malignant pleural effusions from other causes of pleural effusion, based on the presence of visible pleural metastases, pleural thickening greater than 1 cm, pleural nodularity, diaphragmatic thickening measuring greater than 7mm and an echogenic swirling pattern visible in the pleural fluid. [5] [6]

Biochemical analysis

Malignant pleural effusions are exudates. A low pleural fluid pH is associated with poorer survival and reduced pleurodesis efficacy. [7] [8]

Histopathology

Pleural fluid cytology is positive in 60% of cases. However, in the remaining cases, pleural biopsy is required. Image guided biopsy and thoracoscopy have largely replaced blind biopsy due to their greater sensitivity and safety profile. CT guided biopsy has a sensitivity of 87% compared to Abrams' needle biopsy, which has a sensitivity of 47%. [9]

Biomarkers

Identification of pleural fluid biomarkers to distinguish malignant pleural effusions from other causes of exudative effusions would help diagnosis. Biomarkers that have been shown to be raised in malignant pleural effusions compared to benign disease include vascular endothelial growth factor (VEGF), endostatin, matrix metalloproteinases and tumour markers such as carcinoembryonic antigen. [10] [11] [12] [13] Pleural fluid mesothelin has a sensitivity of 71%, greater than that of cytology, and a specificity of 89% for the diagnosis of malignant mesothelioma. [14]

Treatment

The goal of treatment of malignant pleural effusions is relief of shortness of breath. [15] Occasionally, treatment of the underlying cancer can cause resolution of the effusion. This may be the case with types of cancer that respond well to chemotherapy, such as small cell carcinoma or lymphoma. Simple aspiration of pleural fluid can relieve shortness of breath rapidly but fluid and symptoms will usually recur within a couple of weeks. Drainage should generally be done under ultrasound guidance. [16]

For this reason, more permanent treatments are usually used to prevent fluid recurrence. Standard treatment involves inserting an indwelling plural catheter and pleurodesis. [16] However, this treatment requires an inpatient stay of approximately 2–7 days, can be painful and has a significant failure rate. This has led to the development of tunneled pleural catheters (e.g., Pleurx Catheters), which allow outpatient treatment of effusions. If an infection due to the catheter occurs, antibiotics are given and the catheter is generally left in. [16]

A Cochrane review concluded tentatively in favour of thoracoscopy to remove the fluid and blow talc into the pleural cavity (talc poudrage) compared to other commonly used methods. [17]

Related Research Articles

<span class="mw-page-title-main">Pleural cavity</span> Thin fluid-filled space between the two pulmonary pleurae (visceral and parietal) of each lung

The pleural cavity, pleural space, or interpleural space is the potential space between the pleurae of the pleural sac that surrounds each lung. A small amount of serous pleural fluid is maintained in the pleural cavity to enable lubrication between the membranes, and also to create a pressure gradient.

<span class="mw-page-title-main">Pneumothorax</span> Abnormal collection of air in the pleural space

A pneumothorax is an abnormal collection of air in the pleural space between the lung and the chest wall. Symptoms typically include sudden onset of sharp, one-sided chest pain and shortness of breath. In a minority of cases, a one-way valve is formed by an area of damaged tissue, and the amount of air in the space between chest wall and lungs increases; this is called a tension pneumothorax. This can cause a steadily worsening oxygen shortage and low blood pressure. This leads to a type of shock called obstructive shock, which can be fatal unless reversed. Very rarely, both lungs may be affected by a pneumothorax. It is often called a "collapsed lung", although that term may also refer to atelectasis.

<span class="mw-page-title-main">Mesothelioma</span> Cancer associated with asbestos

Mesothelioma is a type of cancer that develops from the thin layer of tissue that covers many of the internal organs. The area most commonly affected is the lining of the lungs and chest wall. Less commonly the lining of the abdomen and rarely the sac surrounding the heart, or the sac surrounding the testis may be affected. Signs and symptoms of mesothelioma may include shortness of breath due to fluid around the lung, a swollen abdomen, chest wall pain, cough, feeling tired, and weight loss. These symptoms typically come on slowly.

<span class="mw-page-title-main">Pleurisy</span> Disease of the lungs

Pleurisy, also known as pleuritis, is inflammation of the membranes that surround the lungs and line the chest cavity (pleurae). This can result in a sharp chest pain while breathing. Occasionally the pain may be a constant dull ache. Other symptoms may include shortness of breath, cough, fever, or weight loss, depending on the underlying cause. Pleurisy can be caused by a variety of conditions, including viral or bacterial infections, autoimmune disorders, and pulmonary embolism.

<span class="mw-page-title-main">Pleural effusion</span> Accumulation of excess fluid in the pleural cavity

A pleural effusion is accumulation of excessive fluid in the pleural space, the potential space that surrounds each lung. Under normal conditions, pleural fluid is secreted by the parietal pleural capillaries at a rate of 0.6 millilitre per kilogram weight per hour, and is cleared by lymphatic absorption leaving behind only 5–15 millilitres of fluid, which helps to maintain a functional vacuum between the parietal and visceral pleurae. Excess fluid within the pleural space can impair inspiration by upsetting the functional vacuum and hydrostatically increasing the resistance against lung expansion, resulting in a fully or partially collapsed lung.

<span class="mw-page-title-main">Exudate</span> Fluid emitted through pores or a wound

An exudate is a fluid emitted by an organism through pores or a wound, a process known as exuding or exudation. Exudate is derived from exude 'to ooze' from Latin exsūdāre 'to sweat'.

<span class="mw-page-title-main">Pleural empyema</span> Medical condition

Pleural empyema is a collection of pus in the pleural cavity caused by microorganisms, usually bacteria. Often it happens in the context of a pneumonia, injury, or chest surgery. It is one of the various kinds of pleural effusion. There are three stages: exudative, when there is an increase in pleural fluid with or without the presence of pus; fibrinopurulent, when fibrous septa form localized pus pockets; and the final organizing stage, when there is scarring of the pleura membranes with possible inability of the lung to expand. Simple pleural effusions occur in up to 40% of bacterial pneumonias. They are usually small and resolve with appropriate antibiotic therapy. If however an empyema develops additional intervention is required.

<span class="mw-page-title-main">Pleurodesis</span> Medical procedure on pleural cavity

Pleurodesis is a medical procedure in which part of the pleural space is artificially obliterated. It involves the adhesion of the visceral and the costal pleura. The mediastinal pleura is spared.

<span class="mw-page-title-main">Lymphangioleiomyomatosis</span> Medical condition

Lymphangioleiomyomatosis (LAM) is a rare, progressive and systemic disease that typically results in cystic lung destruction. It predominantly affects women, especially during childbearing years. The term sporadic LAM is used for patients with LAM not associated with tuberous sclerosis complex (TSC), while TSC-LAM refers to LAM that is associated with TSC.

<span class="mw-page-title-main">Hemothorax</span> Blood accumulation in the pleural cavity

A hemothorax is an accumulation of blood within the pleural cavity. The symptoms of a hemothorax may include chest pain and difficulty breathing, while the clinical signs may include reduced breath sounds on the affected side and a rapid heart rate. Hemothoraces are usually caused by an injury, but they may occur spontaneously due to cancer invading the pleural cavity, as a result of a blood clotting disorder, as an unusual manifestation of endometriosis, in response to Pneumothorax, or rarely in association with other conditions.

<span class="mw-page-title-main">Chylothorax</span> Medical condition

A chylothorax is an abnormal accumulation of chyle, a type of lipid-rich lymph, in the space surrounding the lung. The lymphatics of the digestive system normally returns lipids absorbed from the small bowel via the thoracic duct, which ascends behind the esophagus to drain into the left brachiocephalic vein. If normal thoracic duct drainage is disrupted, either due to obstruction or rupture, chyle can leak and accumulate within the negative-pressured pleural space. In people on a normal diet, this fluid collection can sometimes be identified by its turbid, milky white appearance, since chyle contains emulsified triglycerides.

<span class="mw-page-title-main">Thoracentesis</span> Medical procedure

Thoracentesis, also known as thoracocentesis, pleural tap, needle thoracostomy, or needle decompression, is an invasive medical procedure to remove fluid or air from the pleural space for diagnostic or therapeutic purposes. A cannula, or hollow needle, is carefully introduced into the thorax, generally after administration of local anesthesia. The procedure was first performed by Morrill Wyman in 1850 and then described by Henry Ingersoll Bowditch in 1852.

<span class="mw-page-title-main">Pericardial effusion</span> Medical condition

A pericardial effusion is an abnormal accumulation of fluid in the pericardial cavity. The pericardium is a two-part membrane surrounding the heart: the outer fibrous connective membrane and an inner two-layered serous membrane. The two layers of the serous membrane enclose the pericardial cavity between them. This pericardial space contains a small amount of pericardial fluid. The fluid is normally 15-50 mL in volume. The pericardium, specifically the pericardial fluid provides lubrication, maintains the anatomic position of the heart in the chest, and also serves as a barrier to protect the heart from infection and inflammation in adjacent tissues and organs.

<span class="mw-page-title-main">Lymphangiomatosis</span> Medical condition

Lymphangiomatosis is a condition where a lymphangioma is not present in a single localised mass, but in a widespread or multifocal manner. It is a rare type of tumor which results from an abnormal development of the lymphatic system.

Lung cancer staging is the assessment of the extent to which a lung cancer has spread from its original source. As with most cancers, staging is an important determinant of treatment and prognosis. In general, more advanced stages of cancer are less amenable to treatment and have a worse prognosis.

<span class="mw-page-title-main">Asbestos-related diseases</span> Medical condition

Asbestos-related diseases are disorders of the lung and pleura caused by the inhalation of asbestos fibres. Asbestos-related diseases include non-malignant disorders such as asbestosis, diffuse pleural thickening, pleural plaques, pleural effusion, rounded atelectasis and malignancies such as lung cancer and malignant mesothelioma.

<span class="mw-page-title-main">Urinothorax</span> Presence of urine in the fluid-filled cavity that surrounds the lungs

Urinothorax is defined as urine in the fluid-filled cavity that surrounds the lungs. It is usually caused by obstructive uropathy. It is mainly diagnosed by analyzing the pleural fluid. Treatment involves treating the underlying condition, which typically results in resolution of the urinothorax. It is an extremely rare cause of pleural effusion.

Thoracic endometriosis is a rare form of endometriosis where endometrial-like tissue is found in the lung parenchyma and/or the pleura. It can be classified as either pulmonary, or pleural, respectively. Endometriosis is characterized by the presence of tissue similar to the lining of the uterus forming abnormal growths elsewhere in the body. Usually these growths are found in the pelvis, between the rectum and the uterus, the ligaments of the pelvis, the bladder, the ovaries, and the sigmoid colon. The cause is not known. The most common symptom of thoracic endometriosis is chest pain occurring right before or during menstruation. Diagnosis is based on clinical history and examination, augmented with X-ray, CT scan, and magnetic resonance imaging of the chest. Treatment options include surgery and hormones.

Interventional pulmonology is a maturing medical sub-specialty from its parent specialty of pulmonary medicine. It deals specifically with minimally invasive endoscopic and percutaneous procedures for diagnosis and treatment of neoplastic as well as non-neoplastic diseases of the airways, lungs, and pleura. Many IP procedures constitute efficacious yet less invasive alternatives to thoracic surgery.

<span class="mw-page-title-main">Hepatic hydrothorax</span> Medical condition

Hepatic hydrothorax is a rare form of pleural effusion that occurs in people with liver cirrhosis. It is defined as an effusion of over 500 mL in people with liver cirrhosis that is not caused by heart, lung, or pleural disease. It is found in 5-10% of people with liver cirrhosis and 2-3% of people with pleural effusions. It is much more common on the right side, with 85% of cases occurring on the right, 13% on the left, and 2% on both. Although it is most common in people with severe ascites, people with mild or no ascites have had the condition. Symptoms are not specific and mostly involve the respiratory system.

References

  1. "NCI Dictionary of Cancer Terms". NCI. 2011-02-02. Retrieved 21 December 2018.
  2. Hausheer FH, Yarbro JW (March 1985). "Diagnosis and Management of Malignant Pleural Effusion". Seminars in Oncology. 12 (1): 54–75. PMID   2579439.
  3. Antony VB, Loddenkemper R, Astoul P, et al. (August 2001). "Management of malignant pleural effusions". Eur. Respir. J. 18 (2): 402–19. doi: 10.1183/09031936.01.00225601 . PMID   11529302.
  4. Ferrer J, Roldán J, Teixidor J, Pallisa E, Gich I, Morell F (March 2005). "Predictors of pleural malignancy in patients with pleural effusion undergoing thoracoscopy". Chest. 127 (3): 1017–22. doi:10.1378/chest.127.3.1017. PMID   15764788.
  5. Qureshi NR, Rahman NM, Gleeson FV (February 2009). "Thoracic ultrasound in the diagnosis of malignant pleural effusion". Thorax. 64 (2): 139–43. doi: 10.1136/thx.2008.100545 . PMID   18852159.
  6. Chian CF, Su WL, Soh LH, Yan HC, Perng WC, Wu CP (July 2004). "Echogenic swirling pattern as a predictor of malignant pleural effusions in patients with malignancies". Chest. 126 (1): 129–34. doi:10.1378/chest.126.1.129. PMID   15249453.
  7. Sahn SA, Good JT (March 1988). "Pleural fluid pH in malignant effusions. Diagnostic, prognostic, and therapeutic implications". Ann. Intern. Med. 108 (3): 345–9. doi:10.7326/0003-4819-108-3-345. PMID   3341671.
  8. Rodríguez-Panadero F, López Mejías J (March 1989). "Low glucose and pH levels in malignant pleural effusions. Diagnostic significance and prognostic value in respect to pleurodesis". Am. Rev. Respir. Dis. 139 (3): 663–7. doi:10.1164/ajrccm/139.3.663. PMID   2923367.
  9. Maskell NA, Gleeson FV, Davies RJ (April 2003). "Standard pleural biopsy versus CT-guided cutting-needle biopsy for diagnosis of malignant disease in pleural effusions: a randomised controlled trial". Lancet. 361 (9366): 1326–30. doi:10.1016/S0140-6736(03)13079-6. PMID   12711467. S2CID   22606449.
  10. Sack U, Hoffmann M, Zhao XJ, et al. (April 2005). "Vascular endothelial growth factor in pleural effusions of different origin". Eur. Respir. J. 25 (4): 600–4. doi: 10.1183/09031936.05.00037004 . PMID   15802331.
  11. Sumi M, Kagohashi K, Satoh H, Ishikawa H, Funayama Y, Sekizawa K (2003). "Endostatin levels in exudative pleural effusions". Lung. 181 (6): 329–34. doi:10.1007/s00408-003-1035-9. PMID   14749937. S2CID   10290685.
  12. Gaspar MJ, De Miguel J, García Díaz JD, Díez M (2008). "Clinical utility of a combination of tumour markers in the diagnosis of malignant pleural effusions". Anticancer Res. 28 (5B): 2947–52. PMID   19031938.
  13. Vatansever S, Gelisgen R, Uzun H, Yurt S, Kosar F (2009). "Potential role of matrix metalloproteinase-2,-9 and tissue inhibitors of metalloproteinase-1,-2 in exudative pleural effusions". Clin Invest Med. 32 (4): E293–300. doi: 10.25011/cim.v32i4.6621 . PMID   19640333.
  14. Davies HE, Sadler RS, Bielsa S, et al. (September 2009). "Clinical impact and reliability of pleural fluid mesothelin in undiagnosed pleural effusions". Am. J. Respir. Crit. Care Med. 180 (5): 437–44. doi:10.1164/rccm.200811-1729OC. PMID   19299498.
  15. Roberts ME, Neville E, Berrisford RG, Antunes G, Ali NJ (August 2010). "Management of a malignant pleural effusion: British Thoracic Society Pleural Disease Guideline 2010". Thorax. 65 Suppl 2 (Suppl 2): ii32–40. doi: 10.1136/thx.2010.136994 . PMID   20696691.
  16. 1 2 3 Feller-Kopman DJ, Reddy CB, DeCamp MM, Diekemper RL, Gould MK, Henry T, et al. (October 2018). "Management of Malignant Pleural Effusions. An Official ATS/STS/STR Clinical Practice Guideline". American Journal of Respiratory and Critical Care Medicine. 198 (7): 839–849. doi:10.1164/rccm.201807-1415ST. PMID   30272503. S2CID   52894157.
  17. Dipper, Alexandra; Jones, Hayley E.; Bhatnagar, Rahul; Preston, Nancy J.; Maskell, Nick; Clive, Amelia O. (21 April 2020). "Interventions for the management of malignant pleural effusions: a network meta-analysis". The Cochrane Database of Systematic Reviews. 2020 (4): CD010529. doi:10.1002/14651858.CD010529.pub3. ISSN   1469-493X. PMC   7173736 . PMID   32315458.

PD-icon.svg This article incorporates public domain material from Dictionary of Cancer Terms. U.S. National Cancer Institute.