Geological hazard

Last updated
Huge landslide at La Conchita, 1995 Laconchita1995landslide.jpg
Huge landslide at La Conchita, 1995

A geologic hazard or geohazard is an adverse of geologic condition capable of causing widespread damage or loss of property and life. [1] These hazards are geological and environmental conditions and involve long-term or short-term geological processes. Geohazards can be relatively small features, but they can also attain huge dimensions (e.g., submarine or surface landslide) and affect local and regional socio-economics to a large extent (e.g., tsunamis).

Contents

Sometimes the hazard is instigated by the careless location of developments or construction in which the conditions were not taken into account. Human activities, such as drilling through overpressured zones, could result in significant risk, and as such mitigation and prevention are paramount, through improved understanding of geohazards, their preconditions, causes and implications. In other cases, particularly in montane regions, natural processes can cause catalytic events of a complex nature, such as an avalanche hitting a lake and causing a debris flow, with consequences potentially hundreds of miles away, or creating a lahar by volcanism.

Marine geohazards in particular constitute a fast-growing sector of research as they involve seismic, tectonic, volcanic processes now occurring at higher frequency, and often resulting in coastal sub-marine avalanches or devastating tsunamis in some of the most densely populated areas of the world [2] [3]

Such impacts on vulnerable coastal populations, coastal infrastructures, offshore exploration platforms, obviously call for a higher level of preparedness and mitigation. [4] [5]

Speed of development

Sudden phenomena

Sudden phenomena include:

Slow phenomena

Gradual or slow phenomena include:

Evaluation and mitigation

Geologic hazards are typically evaluated by engineering geologists who are educated and trained in interpretation of landforms and earth process, earth-structure interaction, and in geologic hazard mitigation. The engineering geologist provides recommendations and designs to mitigate for geologic hazards. Trained hazard mitigation planners also assist local communities to identify strategies for mitigating the effects of such hazards and developing plans to implement these measures. Mitigation can include a variety of measures:

In paleohistory

Eleven distinct flood basalt episodes occurred in the past 250 million years, resulting in large volcanic provinces, creating lava plateaus and mountain ranges on Earth. [8] Large igneous provinces have been connected to five mass extinction events. The timing of six out of eleven known provinces coincide with periods of global warming and marine anoxia/dysoxia. Thus, suggesting that volcanic CO2 emissions can force an important effect on the climate system. [9]

Known hazards

See also

Related Research Articles

<span class="mw-page-title-main">Landslide</span> Natural hazard involving ground movement

Landslides, also known as landslips, are several forms of mass wasting that may include a wide range of ground movements, such as rockfalls, mudflows, shallow or deep-seated slope failures and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients, from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides.

<span class="mw-page-title-main">Natural disaster</span> Major adverse event resulting from natural processes of the Earth

A natural disaster is the highly harmful impact on a society or community following a natural hazard event. Some examples of natural hazard events include: flooding, drought, earthquake, tropical cyclone, lightning, tsunami, volcanic activity, wildfire. A natural disaster can cause loss of life or damage property, and typically leaves economic damage in its wake. The severity of the damage depends on the affected population's resilience and on the infrastructure available. Scholars have been saying that the term natural disaster is unsuitable and should be abandoned. Instead, the simpler term disaster could be used, while also specifying the category of hazard. A disaster is a result of a natural or human-made hazard impacting a vulnerable community. It is the combination of the hazard along with exposure of a vulnerable society that results in a disaster.

<span class="mw-page-title-main">Stratovolcano</span> Type of conical volcano composed of layers of lava and tephra

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica, with lesser amounts of less viscous mafic magma. Extensive felsic lava flows are uncommon, but have traveled as far as 15 km (9 mi).

<span class="mw-page-title-main">Megatsunami</span> Very large wave created by a large, sudden displacement of material into a body of water

A megatsunami is a very large wave created by a large, sudden displacement of material into a body of water.

<span class="mw-page-title-main">Slump (geology)</span> Short distance movement of coherent earth down a slope

A slump is a form of mass wasting that occurs when a coherent mass of loosely consolidated materials or a rock layer moves a short distance down a slope. Movement is characterized by sliding along a concave-upward or planar surface. Causes of slumping include earthquake shocks, thorough wetting, freezing and thawing, undercutting, and loading of a slope.

<span class="mw-page-title-main">Lahar</span> Violent type of mudflow or debris flow from a volcano

A lahar is a violent type of mudflow or debris flow composed of a slurry of pyroclastic material, rocky debris and water. The material flows down from a volcano, typically along a river valley.

<span class="mw-page-title-main">Engineering geology</span> Application of geology to engineering practice

Engineering geology is the application of geology to engineering study for the purpose of assuring that the geological factors regarding the location, design, construction, operation and maintenance of engineering works are recognized and accounted for. Engineering geologists provide geological and geotechnical recommendations, analysis, and design associated with human development and various types of structures. The realm of the engineering geologist is essentially in the area of earth-structure interactions, or investigation of how the earth or earth processes impact human made structures and human activities.

<span class="mw-page-title-main">Flood basalt</span> Very large volume eruption of basalt lava

A flood basalt is the result of a giant volcanic eruption or series of eruptions that covers large stretches of land or the ocean floor with basalt lava. Many flood basalts have been attributed to the onset of a hotspot reaching the surface of the Earth via a mantle plume. Flood basalt provinces such as the Deccan Traps of India are often called traps, after the Swedish word trappa, due to the characteristic stairstep geomorphology of many associated landscapes.

The Decade Volcanoes are 16 volcanoes identified by the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) as being worthy of particular study in light of their history of large, destructive eruptions and proximity to densely populated areas. The Decade Volcanoes project encourages studies and public-awareness activities at these volcanoes, with the aim of achieving a better understanding of the volcanoes and the dangers they present, and thus being able to reduce the severity of natural disasters.

<span class="mw-page-title-main">Debris flow</span> Geological phenomenon

Debris flows are geological phenomena in which water-laden masses of soil and fragmented rock rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form thick, muddy deposits on valley floors. They generally have bulk densities comparable to those of rock avalanches and other types of landslides, but owing to widespread sediment liquefaction caused by high pore-fluid pressures, they can flow almost as fluidly as water. Debris flows descending steep channels commonly attain speeds that surpass 10 m/s (36 km/h), although some large flows can reach speeds that are much greater. Debris flows with volumes ranging up to about 100,000 cubic meters occur frequently in mountainous regions worldwide. The largest prehistoric flows have had volumes exceeding 1 billion cubic meters. As a result of their high sediment concentrations and mobility, debris flows can be very destructive.

There have been known various classifications of landslides. Broad definitions include forms of mass movement that narrower definitions exclude. For example, the McGraw-Hill Encyclopedia of Science and Technology distinguishes the following types of landslides:

<i>Earth Revealed: Introductory Geology</i> American TV series or program

Earth Revealed: Introductory Geology, originally titled Earth Revealed, is a 26-part video instructional series covering the processes and properties of the physical Earth, with particular attention given to the scientific theories underlying geological principles. The telecourse was produced by Intelecom and the Southern California Consortium, was funded by the Annenberg/CPB Project, and first aired on PBS in 1992 with the title Earth Revealed. All 26 episodes are hosted by Dr. James L. Sadd, professor of environmental science at Occidental College in Los Angeles, California.

<span class="mw-page-title-main">Submarine landslide</span> Landslides that transport sediment across the continental shelf and into the deep ocean

Submarine landslides are marine landslides that transport sediment across the continental shelf and into the deep ocean. A submarine landslide is initiated when the downwards driving stress exceeds the resisting stress of the seafloor slope material, causing movements along one or more concave to planar rupture surfaces. Submarine landslides take place in a variety of different settings, including planes as low as 1°, and can cause significant damage to both life and property. Recent advances have been made in understanding the nature and processes of submarine landslides through the use of sidescan sonar and other seafloor mapping technology.

<span class="mw-page-title-main">Volcanic hazard</span>

A volcanic hazard is the probability a volcanic eruption or related geophysical event will occur in a given geographic area and within a specified window of time. The risk that can be associated with a volcanic hazard depends on the proximity and vulnerability of an asset or a population of people near to where a volcanic event might occur.

A tsunami is a series of water waves caused by the displacement of a large volume within a body of water, often caused by earthquakes, or similar events. This may occur in lakes as well as oceans, presenting threats to both fishermen and shoreside inhabitants. Because they are generated by a near field source region, tsunamis generated in lakes and reservoirs result in a decreased amount of warning time.

On the morning of March 13, 1888, an explosion took place on Ritter Island, a small volcanic island in the Bismarck and Solomon Seas, between New Britain and Umboi Island. The explosion resulted in the collapse of most of the island and generated a tsunami with runups of up to 15 meters (49 ft) that caused damage more than 700 kilometers (430 mi) away and killed anywhere between 500 and 3,000 on neighbouring islands, including scientists and explorers. This event is the largest volcanic island sector collapse in recent history.

<span class="mw-page-title-main">Volcanic tsunami</span> Natural hazard

A volcanic tsunami, also called a volcanogenic tsunami, is a tsunami produced by volcanic phenomena. About 20–25% of all fatalities at volcanoes during the past 250 years have been caused by volcanic tsunamis. The most devastating volcanic tsunami in recorded history was that produced by the 1883 eruption of Krakatoa. The waves reached heights of 40 m (130 ft) and killed 36,000 people.

The 1840 Ahora earthquake occurred on 2 July at 16:00 local time, affecting Ağrı Province in the Eastern Anatolia Region of present-day Turkey. The earthquake had an epicenter near Mount Ararat, where it triggered an eruption and caused a landslide that destroyed villages. An estimated 10,000 people were killed by the earthquake and its damaging aftershocks. Earthquake catalogs place the surface-wave magnitude at Ms  7.4 and maximum Modified Mercalli intensity scale assigned IX (Violent).

<span class="mw-page-title-main">Volcanic landslide</span> Mass movement that occurs at volcanoes

A volcanic landslide or volcanogenic landslide is a type of mass wasting that takes place at volcanoes.

References

  1. International Centre for Geohazards Archived March 2, 2008, at the Wayback Machine
  2. de Lange, G.; Sakellariou, D.; Briand, F. (2011). "Marine Geohazards in the Mediterranean: an overview". CIESM Workshop Monographs. 42: 7–26.
  3. Cardenas, I.C.; et al. (2022). "Marine geohazards exposed: Uncertainties involved". Marine Georesources and Geotechnology . 41 (6): 589–619. doi: 10.1080/1064119X.2022.2078252 . hdl: 11250/3058338 . S2CID   249161443.
  4. Nadim (2006). "Challenges to geo-scientists in risk assessment for sub-marine slides". Norwegian Journal of Geology. 86 (3): 351–362.
  5. Solheim, A.; et al. "2005. Ormen Lange – An integrated study for the safe development of a deep-water gas field within the Storegga Slide complex, NE Atlantic continental margin; executive summary". Marine and Petroleum Geology . 22 (1–2): 1–9. doi:10.1016/j.marpetgeo.2004.10.001.
  6. Geologic Hazards NationalAtlas Archived 2010-04-30 at the Wayback Machine
  7. Toussaint, Kristin (2021-09-29). "Are environmental hazards threatening your home? This website will show you". Fast Company. Retrieved 2022-06-13.
  8. Michael R. Rampino; Richard B. Stothers (1988). "Flood Basalt Volcanism During the Past 250 Million Years". Science. 241 (4866): 663–668. Bibcode:1988Sci...241..663R. doi:10.1126/science.241.4866.663. PMID   17839077. S2CID   33327812.
  9. P.B. Wignall (2001). "Large igneous provinces and mass extinctions". Earth-Science Reviews. 53 (1–2): 1–33. Bibcode:2001ESRv...53....1W. doi:10.1016/S0012-8252(00)00037-4.