Geological hazard

Last updated
Huge landslide at La Conchita, 1995 Laconchita1995landslide.jpg
Huge landslide at La Conchita, 1995

A geologic hazard or geohazard is an adverse geologic condition capable of causing widespread damage or loss of property and life. [1] These hazards are geological and environmental conditions and involve long-term or short-term geological processes. Geohazards can be relatively small features, but they can also attain huge dimensions (e.g., submarine or surface landslide) and affect local and regional socio-economics to a large extent (e.g., tsunamis).

Contents

Sometimes the hazard is instigated by the careless location of developments or construction in which the conditions were not taken into account. Human activities, such as drilling through overpressured zones, could result in significant risk, and as such mitigation and prevention are paramount, through improved understanding of geohazards, their preconditions, causes and implications. In other cases, particularly in montane regions, natural processes can cause catalytic events of a complex nature, such as an avalanche hitting a lake and causing a debris flow, with consequences potentially hundreds of miles away, or creating a lahar by volcanism.

Marine geohazards in particular constitute a fast-growing sector of research as they involve seismic, tectonic, volcanic processes now occurring at higher frequency, and often resulting in coastal sub-marine avalanches or devastating tsunamis in some of the most densely populated areas of the world [2] [3]

Such impacts on vulnerable coastal populations, coastal infrastructures, offshore exploration platforms, obviously call for a higher level of preparedness and mitigation. [4] [5]

Speed of development

Sudden phenomena

Sudden phenomena include:

Slow phenomena

Gradual or slow phenomena include:

Evaluation and mitigation

Geologic hazards are typically evaluated by engineering geologists who are educated and trained in interpretation of landforms and earth process, earth-structure interaction, and in geologic hazard mitigation. The engineering geologist provides recommendations and designs to mitigate for geologic hazards. Trained hazard mitigation planners also assist local communities to identify strategies for mitigating the effects of such hazards and developing plans to implement these measures. Mitigation can include a variety of measures:

Earth observation of geohazards

In recent decades, Earth Observation (EO) has become a key tool in geohazards management, including preparedness, response, recovery, and mitigation [9] . By leveraging remote sensing technologies, often supported by ground surveys, EO provides critical information to researchers, decision-makers, and planners. It has revolutionized our ability to map and monitor geohazards with precision and timeliness [9] .

In paleohistory

Eleven distinct flood basalt episodes occurred in the past 250 million years, resulting in large volcanic provinces, creating lava plateaus and mountain ranges on Earth. [10] Large igneous provinces have been connected to five mass extinction events. The timing of six out of eleven known provinces coincide with periods of global warming and marine anoxia/dysoxia. Thus, suggesting that volcanic CO2 emissions can force an important effect on the climate system. [11]

Known hazards

See also

Related Research Articles

<span class="mw-page-title-main">Earthquake</span> Sudden movement of the Earths crust

An earthquake – also called a quake, tremor, or temblor – is the shaking of the Earth's surface resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes can range in intensity, from those so weak they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume.

<span class="mw-page-title-main">Tsunami</span> Series of water waves caused by the displacement of a large volume of a body of water

A tsunami is a series of waves in a water body caused by the displacement of a large volume of water, generally in an ocean or a large lake. Earthquakes, volcanic eruptions and underwater explosions above or below water all have the potential to generate a tsunami. Unlike normal ocean waves, which are generated by wind, or tides, which are in turn generated by the gravitational pull of the Moon and the Sun, a tsunami is generated by the displacement of water from a large event.

<span class="mw-page-title-main">Landslide</span> Natural hazard involving ground movement

Landslides, also known as landslips, or rockslides, are several forms of mass wasting that may include a wide range of ground movements, such as rockfalls, mudflows, shallow or deep-seated slope failures and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients, from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides.

<span class="mw-page-title-main">Natural disaster</span> Type of adverse event

A natural disaster is the very harmful impact on a society or community after a natural hazard event. Some examples of natural hazard events include avalanches, droughts, earthquakes, floods, heat waves, landslides, tropical cyclones, volcanic activity and wildfires. Additional natural hazards include blizzards, dust storms, firestorms, hails, ice storms, sinkholes, thunderstorms, tornadoes and tsunamis. A natural disaster can cause loss of life or damage property. It typically causes economic damage. How bad the damage is depends on how well people are prepared for disasters and how strong the buildings, roads, and other structures are. Scholars have been saying that the term natural disaster is unsuitable and should be abandoned. Instead, the simpler term disaster could be used. At the same time the type of hazard would be specified. A disaster happens when a natural or human-made hazard impacts a vulnerable community. It results from the combination of the hazard and the exposure of a vulnerable society.

<span class="mw-page-title-main">Slump (geology)</span> Short distance movement of coherent earth down a slope

A slump is a form of mass wasting that occurs when a coherent mass of loosely consolidated materials or a rock layer moves a short distance down a slope. Movement is characterized by sliding along a concave-upward or planar surface. Causes of slumping include earthquake shocks, thorough wetting, freezing and thawing, undercutting, and loading of a slope.

<span class="mw-page-title-main">Lahar</span> Volcanic mudslide

A lahar is a violent type of mudflow or debris flow composed of a slurry of pyroclastic material, rocky debris and water. The material flows down from a volcano, typically along a river valley.

<span class="mw-page-title-main">Engineering geology</span> Application of geology to engineering practice

Engineering geology is the application of geology to engineering study for the purpose of assuring that the geological factors regarding the location, design, construction, operation and maintenance of engineering works are recognized and accounted for. Engineering geologists provide geological and geotechnical recommendations, analysis, and design associated with human development and various types of structures. The realm of the engineering geologist is essentially in the area of earth-structure interactions, or investigation of how the earth or earth processes impact human made structures and human activities.

<span class="mw-page-title-main">Mass wasting</span> Movement of rock or soil down slopes

Mass wasting, also known as mass movement, is a general term for the movement of rock or soil down slopes under the force of gravity. It differs from other processes of erosion in that the debris transported by mass wasting is not entrained in a moving medium, such as water, wind, or ice. Types of mass wasting include creep, solifluction, rockfalls, debris flows, and landslides, each with its own characteristic features, and taking place over timescales from seconds to hundreds of years. Mass wasting occurs on both terrestrial and submarine slopes, and has been observed on Earth, Mars, Venus, Jupiter's moon Io, and on many other bodies in the Solar System.

Debris is rubble, wreckage, ruins, litter and discarded garbage/refuse/trash, scattered remains of something destroyed, or, as in geology, large rock fragments left by a melting glacier, etc. Depending on context, debris can refer to a number of different things. The first apparent use of the French word in English is in a 1701 description of the army of Prince Rupert upon its retreat from a battle with the army of Oliver Cromwell, in England.

<span class="mw-page-title-main">Debris flow</span> Geological phenomenon

Debris flows are geological phenomena in which water-laden masses of soil and fragmented rock flow down mountainsides, funnel into stream channels, entrain objects in their paths, and form thick, muddy deposits on valley floors. They generally have bulk densities comparable to those of rock avalanches and other types of landslides, but owing to widespread sediment liquefaction caused by high pore-fluid pressures, they can flow almost as fluidly as water. Debris flows descending steep channels commonly attain speeds that surpass 10 m/s (36 km/h), although some large flows can reach speeds that are much greater. Debris flows with volumes ranging up to about 100,000 cubic meters occur frequently in mountainous regions worldwide. The largest prehistoric flows have had volumes exceeding 1 billion cubic meters. As a result of their high sediment concentrations and mobility, debris flows can be very destructive.

Earth observation (EO) is the gathering of information about the physical, chemical, and biological systems of the planet Earth. It can be performed via remote-sensing technologies or through direct-contact sensors in ground-based or airborne platforms.

<span class="mw-page-title-main">Prediction of volcanic activity</span> Research to predict volcanic activity

Prediction of volcanic activity, and volcanic eruption forecasting, is an interdisciplinary monitoring and research effort to predict the time and severity of a volcano's eruption. Of particular importance is the prediction of hazardous eruptions that could lead to catastrophic loss of life, property, and disruption of human activities.

There have been known various classifications of landslides. Broad definitions include forms of mass movement that narrower definitions exclude. For example, the McGraw-Hill Encyclopedia of Science and Technology distinguishes the following types of landslides:

<span class="mw-page-title-main">Submarine landslide</span> Landslides that transport sediment across the continental shelf and into the deep ocean

Submarine landslides are marine landslides that transport sediment across the continental shelf and into the deep ocean. A submarine landslide is initiated when the downwards driving stress exceeds the resisting stress of the seafloor slope material, causing movements along one or more concave to planar rupture surfaces. Submarine landslides take place in a variety of different settings, including planes as low as 1°, and can cause significant damage to both life and property. Recent advances have been made in understanding the nature and processes of submarine landslides through the use of sidescan sonar and other seafloor mapping technology.

<span class="mw-page-title-main">Volcanic hazard</span> Probability of a volcanic eruption or related geophysical event

A volcanic hazard is the probability a volcanic eruption or related geophysical event will occur in a given geographic area and within a specified window of time. The risk that can be associated with a volcanic hazard depends on the proximity and vulnerability of an asset or a population of people near to where a volcanic event might occur.

A tsunami is a series of large water waves caused by the displacement of a large volume within a body of water, often caused by earthquakes, or similar events. This may occur in lakes as well as oceans, presenting threats to both fishermen and shoreside inhabitants. Because they are generated by a near field source region, tsunamis generated in lakes and reservoirs result in a decreased amount of warning time.

<span class="mw-page-title-main">Remote sensing in geology</span> Data acquisition method for earth sciences

Remote sensing is used in the geological sciences as a data acquisition method complementary to field observation, because it allows mapping of geological characteristics of regions without physical contact with the areas being explored. About one-fourth of the Earth's total surface area is exposed land where information is ready to be extracted from detailed earth observation via remote sensing. Remote sensing is conducted via detection of electromagnetic radiation by sensors. The radiation can be naturally sourced, or produced by machines and reflected off of the Earth surface. The electromagnetic radiation acts as an information carrier for two main variables. First, the intensities of reflectance at different wavelengths are detected, and plotted on a spectral reflectance curve. This spectral fingerprint is governed by the physio-chemical properties of the surface of the target object and therefore helps mineral identification and hence geological mapping, for example by hyperspectral imaging. Second, the two-way travel time of radiation from and back to the sensor can calculate the distance in active remote sensing systems, for example, Interferometric synthetic-aperture radar. This helps geomorphological studies of ground motion, and thus can illuminate deformations associated with landslides, earthquakes, etc.

<span class="mw-page-title-main">Sector collapse</span> Collapse of a volcano

A sector collapse or lateral collapse is the structural failure and subsequent collapse of part of a volcano. Unlike a flank collapse, a sector collapse involves the central volcanic pipe. Sector collapses are one of the most hazardous volcanic events, often resulting in lateral blasts, landslides, and changes in volcanic eruptive behavior. Sector collapse can be caused by earthquakes, volcanic eruptions, gradual volcanic deformation, and other processes. Sector collapse events can occur on volcanoes at convergent and divergent plate boundaries. Sector collapses are generally very sudden; however, some attempts have been made to predict collapse events.

<span class="mw-page-title-main">Volcanic tsunami</span> Natural hazard

A volcanic tsunami, also called a volcanogenic tsunami, is a tsunami produced by volcanic phenomena. About 20–25% of all fatalities at volcanoes during the past 250 years have been caused by volcanic tsunamis. The most devastating volcanic tsunami in recorded history was that produced by the 1883 eruption of Krakatoa. The waves reached heights of 40 m (130 ft) and killed 36,000 people.

<span class="mw-page-title-main">Volcanic landslide</span> Mass movement that occurs at volcanoes

A volcanic landslide or volcanogenic landslide is a type of mass wasting that takes place at volcanoes.

References

  1. International Centre for Geohazards Archived March 2, 2008, at the Wayback Machine
  2. de Lange, G.; Sakellariou, D.; Briand, F. (2011). "Marine Geohazards in the Mediterranean: an overview". CIESM Workshop Monographs. 42: 7–26.
  3. Cardenas, I.C.; et al. (2022). "Marine geohazards exposed: Uncertainties involved". Marine Georesources and Geotechnology . 41 (6): 589–619. doi: 10.1080/1064119X.2022.2078252 . hdl: 11250/3058338 . S2CID   249161443.
  4. Nadim (2006). "Challenges to geo-scientists in risk assessment for sub-marine slides". Norwegian Journal of Geology. 86 (3): 351–362.
  5. Solheim, A.; et al. "2005. Ormen Lange – An integrated study for the safe development of a deep-water gas field within the Storegga Slide complex, NE Atlantic continental margin; executive summary". Marine and Petroleum Geology . 22 (1–2): 1–9. doi:10.1016/j.marpetgeo.2004.10.001.
  6. Geologic Hazards NationalAtlas Archived 2010-04-30 at the Wayback Machine
  7. Toussaint, Kristin (2021-09-29). "Are environmental hazards threatening your home? This website will show you". Fast Company. Retrieved 2022-06-13.
  8. Tomás, Roberto; Pagán, José Ignacio; Navarro, José A.; Cano, Miguel; Pastor, José Luis; Riquelme, Adrián; Cuevas-González, María; Crosetto, Michele; Barra, Anna; Monserrat, Oriol; Lopez-Sanchez, Juan M.; Ramón, Alfredo; Ivorra, Salvador; Del Soldato, Matteo; Solari, Lorenzo (January 2019). "Semi-Automatic Identification and Pre-Screening of Geological–Geotechnical Deformational Processes Using Persistent Scatterer Interferometry Datasets". Remote Sensing. 11 (14): 1675. Bibcode:2019RemS...11.1675T. doi: 10.3390/rs11141675 . hdl: 2158/1162779 . ISSN   2072-4292.
  9. 1 2 Tomás, Roberto; Li, Zhenhong (March 2017). "Earth Observations for Geohazards: Present and Future Challenges". Remote Sensing. 9 (3): 194. doi: 10.3390/rs9030194 . ISSN   2072-4292.
  10. Michael R. Rampino; Richard B. Stothers (1988). "Flood Basalt Volcanism During the Past 250 Million Years". Science. 241 (4866): 663–668. Bibcode:1988Sci...241..663R. doi:10.1126/science.241.4866.663. PMID   17839077. S2CID   33327812.
  11. P.B. Wignall (2001). "Large igneous provinces and mass extinctions". Earth-Science Reviews. 53 (1–2): 1–33. Bibcode:2001ESRv...53....1W. doi:10.1016/S0012-8252(00)00037-4.