Schlenk flask

Last updated
Schlenk flask
Schlenk flasks.svg
A selection of Schlenk flasks and, bottom right, a Schlenk tube
Other namesSchlenk tube
UsesVacuum
Inert gas
Inventor Wilhelm Schlenk
Related items Schlenk line

A Schlenk flask, or Schlenk tube, is a reaction vessel typically used in air-sensitive chemistry, invented by Wilhelm Schlenk. It has a side arm fitted with a PTFE or ground glass stopcock, which allows the vessel to be evacuated or filled with gases (usually inert gases like nitrogen or argon). These flasks are often connected to Schlenk lines, which allow both operations to be done easily.

Contents

Schlenk flasks and Schlenk tubes, like most laboratory glassware, are made from borosilicate glass such as Pyrex.

Schlenk flasks are round-bottomed, while Schlenk tubes are elongated. They may be purchased off-the-shelf from laboratory suppliers or made from round-bottom flasks or glass tubing by a skilled glassblower.

Evacuating a Schlenk flask

Typically, before solvent or reagents are introduced into a Schlenk flask, the flask is dried and the atmosphere of the flask is exchanged with an inert gas. A common method of exchanging the atmosphere of the flask is to flush the flask out with an inert gas. The gas can be introduced through the sidearm of the flask, or via a wide bore needle (attached to a gas line). The contents of the flask exit the flask through the neck portion of the flask. The needle method has the advantage that the needle can be placed at the bottom of the flask to better flush out the atmosphere of the flask. Flushing a flask out with an inert gas can be inefficient for large flasks and is impractical for complex apparatus. [1]

An alternative way to exchange the atmosphere of a Schlenk flask is to use one or more "vac-refill" cycles, typically using a vacuum-gas manifold, also known as a Schlenk line. This involves pumping the air out of the flask and replacing the resulting vacuum with an inert gas. For example, evacuation of the flask to 1 mmHg (130 Pa; 0.0013 atm) and then replenishing the atmosphere with 760 mmHg (1 atm) inert gas leaves 0.13% of the original atmosphere (1760). Two such vac-refill cycles leaves 0.000173% (17602). Most Schlenk lines easily and quickly achieve a vacuum of 1 mmHg (~1.3 mBar). [2]

Varieties

When using Schlenk systems, including flasks, the use of grease is often necessary at stopcock valves and ground glass joints to provide a gas tight seal and prevent glass pieces from fusing. In contrast, teflon plug valves may have a trace of oil as a lubricant but generally no grease. In the following text any "connection" is assumed to be rendered mostly air free through a series of vac-refill cycles.

Standard Schlenk flask

A pear-shaped Schlenk flask. The flask's sidearm contains a greased stopcock valve, and the flask is capped with a Suba*Seal septum that has not been turned down. Standard Schlenk flask.JPG
A pear-shaped Schlenk flask. The flask's sidearm contains a greased stopcock valve, and the flask is capped with a Suba•Seal septum that has not been turned down.

The standard Schlenk flask is a round bottom, pear-shaped, or tubular flask with a ground glass joint and a side arm. The side arm contains a valve, usually a greased stopcock, used to control the flask's exposure to a manifold or the atmosphere. This allows a material to be added to a flask through the ground glass joint, which is then capped with a septum. This operation can, for example, be done in a glove box. The flask can then be removed from the glove box and taken to a Schlenk line. Once connected to the Schlenk line, the inert gas and/or vacuum can be applied to the flask as required. While the flask is connected to the line under a positive pressure of inert gas, the septum can be replaced with other apparatus, for example a reflux condenser. Once the manipulations are complete, the contents can be vacuum dried and placed under a static vacuum by closing the side arm valve. These evacuated flasks can be taken back into a glove box for further manipulation or storage of the flasks' contents.

A heavy walled, tube shaped, Schlenk bomb fitted with a large bore plug valve designed for high temperature closed system reactions. Schlenk bomb.JPG
A heavy walled, tube shaped, Schlenk bomb fitted with a large bore plug valve designed for high temperature closed system reactions.

Schlenk bomb

A "bomb" flask is subclass of Schlenk flask which includes all flasks that have only one opening accessed by opening a Teflon plug valve. This design allows a Schlenk bomb to be sealed more completely than a standard Schlenk flask even if its septum or glass cap is wired on. Schlenk bombs include structurally sound shapes such as round bottoms and heavy walled tubes. Schlenk bombs are often used to conduct reactions at elevated pressures and temperatures as a closed system. In addition, all Schlenk bombs are designed to withstand the pressure differential created by the ante-chamber when pumping solvents into a glove box.

In practice Schlenk bombs can perform many of the functions of a standard Schlenk flask. Even when the opening is used to fit a bomb to a manifold, the plug can still be removed to add or remove material from the bomb. In some situations, however, Schlenk bombs are less convenient than standard Schlenk flasks: they lack an accessible ground glass joint to attach additional apparatus; the opening provided by plug valves can be difficult to access with a spatula, and it can be much simpler to work with a septum designed to fit a ground glass joint than with a Teflon plug.

The name "bomb" is often applied to containers used under pressure such as a bomb calorimeter. While glass does not equal the pressure rating and mechanical strength of most metal containers, it does have several advantages. Glass allows visual inspection of a reaction in progress, it is inert to a wide range of reaction conditions and substrates, it is generally more compatible with common laboratory glassware, and it is more easily cleaned and checked for cleanliness.

Straus flask

A Straus flask often called a solvent bomb. "Solvent bomb" is any Schlenk bomb dedicated to storing solvent. It is the construction of the flask neck which makes a Straus flask unique. Straus flask.JPG
A Straus flask often called a solvent bomb. "Solvent bomb" is any Schlenk bomb dedicated to storing solvent. It is the construction of the flask neck which makes a Straus flask unique.

A Straus flask (often misspelled "Strauss") is subclass of "bomb" flask originally developed by Kontes Glass Company, [3] commonly used for storing dried and degassed solvents. Straus flasks are sometimes referred to as solvent bombs — a name which applies to any Schlenk bomb dedicated to storing solvent. Straus flasks are mainly differentiated from other "bombs" by their neck structure. Two necks emerge from a round bottom flask, one larger than the other. The larger neck ends in a ground glass joint and is permanently partitioned by blown glass from direct access to the flask. The smaller neck includes the threading required for a teflon plug to be screwed in perpendicular to the flask. The two necks are joined through a glass tube. The ground glass joint can be connected to a manifold directly or through an adapter and hosing. Once connected, the plug valve can be partially opened to allow the solvent in the Straus flask to be vacuum transferred to other vessels. Or, once connected to the line, the neck can be placed under a positive pressure of inert gas and the plug valve can be fully removed. This allows direct access to the flask through a narrow glass tube now protected by a curtain of inert gas. The solvent can then be transferred through cannula to another flask. In contrast, other bomb flask plugs are not necessarily ideally situated to protect the atmosphere of the flask from the external atmosphere.

A solvent pot ready to have its dried and degassed contents vac transferred to another reaction vessel. This pot contains dibutyl ether dried over sodium and benzophenone, which gives it its purple color. Solvent pot.JPG
A solvent pot ready to have its dried and degassed contents vac transferred to another reaction vessel. This pot contains dibutyl ether dried over sodium and benzophenone, which gives it its purple color.

Solvent pot

Straus flasks are distinct from "solvent pots", which are flasks that contain a solvent as well as drying agents. Solvent pots are not usually bombs, or even Schlenk flasks in the classic sense. The most common configuration of a solvent pot is a simple round bottom flask attached to a 180° adapter fitted with some form of valve. The pot can be attached to a manifold and the contents distilled or vacuum transferred to other flasks free of soluble drying agents, water, oxygen or nitrogen. The term "solvent pot" can also refer to the flask containing the drying agents in a classic solvent still system. Due to fire risks, solvent stills have largely been replaced by solvent columns in which degassed solvent is forced through an insoluble drying agent before being collected. Solvent is usually collected from solvent columns through a needle connected to the column which pierces the septum of a flask or through a ground glass joint connected to the column, as in the case of a Straus flask.


Related Research Articles

<span class="mw-page-title-main">Laboratory glassware</span> Variety of equipment usually made of glass used for scientific experiments

Laboratory glassware refers to a variety of equipment used in scientific work, and traditionally made of glass. Glass can be blown, bent, cut, molded, and formed into many sizes and shapes, and is therefore common in chemistry, biology, and analytical laboratories. Many laboratories have training programs to demonstrate how glassware is used and to alert first–time users to the safety hazards involved with using glassware.

<span class="mw-page-title-main">Glovebox</span> Sealed container with gloves in the side for manipulating the objects inside

A glovebox is a sealed container that is designed to allow one to manipulate objects where a separate atmosphere is desired. Built into the sides of the glovebox are gloves arranged in such a way that the user can place their hands into the gloves and perform tasks inside the box without breaking containment. Part or all of the box is usually transparent to allow the user to see what is being manipulated. Two types of gloveboxes exist. The first allows a person to work with hazardous substances, such as radioactive materials or infectious disease agents, and the second allows manipulation of substances that must be contained within a very high purity inert atmosphere, such as argon or nitrogen. It is also possible to use a glovebox for manipulation of items in a vacuum chamber.

<span class="mw-page-title-main">Gas syringe</span>

A gas syringe is a piece of laboratory glassware used to insert or withdraw a volume of a gas from a closed system, or to measure the volume of gas evolved from a chemical reaction. A gas syringe can also be used to measure and dispense liquids, especially where these liquids need to be kept free from air.

<span class="mw-page-title-main">Cold trap</span> Device that condenses specific vapors and gases

In vacuum applications, a cold trap is a device that condenses all vapors except the permanent gases into a liquid or solid. The most common objective is to prevent vapors being evacuated from an experiment from entering a vacuum pump where they would condense and contaminate it. Particularly large cold traps are necessary when removing large amounts of liquid as in freeze drying.

<span class="mw-page-title-main">Laboratory flask</span>

Laboratory flasks are vessels or containers that fall into the category of laboratory equipment known as glassware. In laboratory and other scientific settings, they are usually referred to simply as flasks. Flasks come in a number of shapes and a wide range of sizes, but a common distinguishing aspect in their shapes is a wider vessel "body" and one narrower tubular sections at the top called necks which have an opening at the top. Laboratory flask sizes are specified by the volume they can hold, typically in metric units such as milliliters or liters. Laboratory flasks have traditionally been made of glass, but can also be made of plastic.

<span class="mw-page-title-main">Separatory funnel</span> Laboratory glassware

A separatory funnel, also known as a separation funnel, separating funnel, or colloquially sep funnel, is a piece of laboratory glassware used in liquid-liquid extractions to separate (partition) the components of a mixture into two immiscible solvent phases of different densities. Typically, one of the phases will be aqueous, and the other a lipophilic organic solvent such as ether, MTBE, dichloromethane, chloroform, or ethyl acetate. All of these solvents form a clear delineation between the two liquids. The more dense liquid, typically the aqueous phase unless the organic phase is halogenated, sinks to the bottom of the funnel and can be drained out through a valve away from the less dense liquid, which remains in the separatory funnel.

<span class="mw-page-title-main">Ampoule</span> Small sealed vial

An ampoule is a small sealed vial which is used to contain and preserve a sample, usually a solid or liquid. Ampoules are usually made of glass.

<span class="mw-page-title-main">Wilhelm Schlenk</span> German chemist (1879–1943)

Wilhelm Johann Schlenk was a German chemist. He was born in Munich and also studied chemistry there. Schlenk succeeded Emil Fischer at the University of Berlin in 1919.

<span class="mw-page-title-main">Stopcock</span> Valve used to control the flow of a liquid or gas

A stopcock is a form of valve used to control the flow of a liquid or gas. The term is not precise and is applied to many different types of valve. The only consistent attribute is that the valve is designed to completely stop the flow when closed fully.

<span class="mw-page-title-main">Round-bottom flask</span>

Round-bottom flasks are types of flasks having spherical bottoms used as laboratory glassware, mostly for chemical or biochemical work. They are typically made of glass for chemical inertness; and in modern days, they are usually made of heat-resistant borosilicate glass. There is at least one tubular section known as the neck with an opening at the tip. Two- or three-necked flasks are common as well. Round bottom flasks come in many sizes, from 5 mL to 20 L, with the sizes usually inscribed on the glass. In pilot plants even larger flasks are encountered.

<span class="mw-page-title-main">Plug valve</span>

Plug valves are valves with cylindrical or conically tapered "plugs" which can be rotated inside the valve body to control flow through the valve. The plugs in plug valves have one or more hollow passageways going sideways through the plug, so that fluid can flow through the plug when the valve is open. Plug valves are simple and often economical.

<span class="mw-page-title-main">Schlenk line</span> Glass apparatus used in chemistry

The Schlenk line is a commonly used chemistry apparatus developed by Wilhelm Schlenk. It consists of a dual manifold with several ports. One manifold is connected to a source of purified inert gas, while the other is connected to a vacuum pump. The inert-gas line is vented through an oil bubbler, while solvent vapors and gaseous reaction products are prevented from contaminating the vacuum pump by a liquid-nitrogen or dry-ice/acetone cold trap. Special stopcocks or Teflon taps allow vacuum or inert gas to be selected without the need for placing the sample on a separate line.

<span class="mw-page-title-main">Perkin triangle</span> Chemistry apparatus specialized for the distillation of air-sensitive substances

A Perkin triangle is a specialized apparatus for the distillation of air-sensitive materials. It is named after William Henry Perkin Jr., whose design was approximately triangular. The diagram shows a more modern version, in which the glass taps have been replaced with more air-tight Teflon taps.

<span class="mw-page-title-main">Drying tube</span>

A drying tube or guard tube is a tube-like piece of apparatus used to house a disposable solid desiccant, wherein at one end the tube-like structure terminates in a ground glass joint for use in connecting the drying tube to a reaction vessel, for the purpose of keeping the vessel free of moisture.

<span class="mw-page-title-main">Gas bubbler</span> Laboratory equipment used to remove air

A gas bubbler is a piece of laboratory glassware which consists of a glass bulb filled with a small amount of fluid — usually mineral or silicone oil, less commonly mercury. The inlet to the bulb is connected to a ground glass joint, while the outlet is vented to the air.

<span class="mw-page-title-main">Ground glass joint</span> Used in laboratories to quickly and easily assemble apparatus from available parts

Ground glass joints are used in laboratories to quickly and easily fit leak-tight apparatus together from interchangeable commonly available parts. For example, a round bottom flask, Liebig condenser, and oil bubbler with ground glass joints may be rapidly fitted together to reflux a reaction mixture. This is a large improvement compared with older methods of custom-made glassware, which was time-consuming and expensive, or the use of less chemical resistant and heat resistant corks or rubber bungs and glass tubes as joints, which took time to prepare as well.

<span class="mw-page-title-main">NMR tube</span> Laboratory glassware

An NMR tube is a thin glass walled tube used to contain samples in nuclear magnetic resonance spectroscopy. Typically NMR tubes come in 5 mm diameters but 10 mm and 3 mm samples are known. It is important that the tubes are uniformly thick and well-balanced to ensure that NMR tube spins at a regular rate, usually about 20 Hz in the NMR spectrometer.

Air-free techniques refer to a range of manipulations in the chemistry laboratory for the handling of compounds that are air-sensitive. These techniques prevent the compounds from reacting with components of air, usually water and oxygen; less commonly carbon dioxide and nitrogen. A common theme among these techniques is the use of a fine (100–10−3 Torr) or high (10−3–10−6 Torr) vacuum to remove air, and the use of an inert gas: preferably argon, but often nitrogen.

<span class="mw-page-title-main">Cannula transfer</span>

Cannula transfer or cannulation is a set of air-free techniques used with a Schlenk line, in transferring liquid or solution samples between reaction vessels via cannulae, avoiding atmospheric contamination. While the syringes are not the same as cannulae, the techniques remain relevant.

A Schlenk-frit is a laboratory filtration device operating under inert gas conditions. It separates air- and water-sensitive suspensions into liquid and solid parts. A Schlenk-frit is made of a glass tube with a ground glass joint at both ends, a fused filter and valves at both sides.

References

  1. The Glassware Gallery: Schlenk Flask
  2. The Manipulation of Air-Sensitive Compounds, by Duward F. Shriver and M. A. Drezdzon 1986, J. Wiley and Sons: New York. ISBN   0-471-86773-X.
  3. Vacuum Flask, Airless/Straus: Kontes website [ permanent dead link ]

Further reading