Wash bottle

Last updated
Lab Wash Bottles
Lab wash-bottles water EtOH.jpg
Plastic wash bottles for ethanol and water
Other namesSqueeze Bottle
UsesTo clean laboratory glassware and other equipment. They are filled with appropriate cleaning liquids, and poured over the tool that needs to be cleaned.
Notable experimentsThe wash bottle is generally used in the clean-up phase of many experiments

A wash bottle is a squeeze bottle with a nozzle, used to rinse various pieces of laboratory glassware, such as test tubes and round bottom flasks.

Contents

Wash bottles are sealed with a screw-top lid. When hand pressure is applied to the bottle, the liquid inside becomes pressurized and is forced out of the nozzle into a narrow stream of liquid.

Most wash bottles are made up of polyethylene, which is a flexible solvent-resistant petroleum-based plastic. Most bottles contain an internal dip tube allowing upright use.

Wash bottles may be filled with a range of common laboratory solvents and reagents, according to the work to be undertaken. These include deionized water, detergent solutions and rinse solvents such as acetone, isopropanol or ethanol. In biological labs it is common to keep sodium hypochlorite solution in a wash bottle to disinfect unneeded cultures.

Colour codes

White top for ethyl alcohol (ethanol), red top for acetone, also with NFPA 704 hazard markings. Nozzle and dip tube built into the bottle Nalgene bottles.jpg
White top for ethyl alcohol (ethanol), red top for acetone, also with NFPA 704 hazard markings. Nozzle and dip tube built into the bottle

There are a consistent set of colour codes and markings used to identify the contents of wash bottles. Red is used for acetone, White for ethanol or sodium hypochlorite or distilled water, green for Methanol, yellow for isopropanol and blue for distilled water. [1]

Safety

Safety warning labels are also used to identify potential hazards. Where reagents with high vapour pressure are used such as ethanol or methanol, small pressure release holes are incorporated into the cap to release and excess vapour pressure and avoid material being ejected through the nozzle when not in use.

Advantages

The use of wash bottles helps researchers control and measure the precise amount of liquid used. In addition, unwanted substances or particles cannot pass through wash bottles. [2] The use of wash bottles is more convenient than using beaker and graduated cylinders. [3]

Types

Different types of wash bottles are suitable with different types of substances. A spiral gas-lift wash bottle, for example, is suitable for eliminating gas with the liquid system having two phases like bromide and water. [4] In addition, a Simple graduated wash bottle helps determine the amount of liquid used. [5] A type of strong solvent and a type of destructive substance can be dealt with Nalgene Teflon FEP wash bottles since the special type of plastic is used to produce this type of wash bottles. [6]

Storage

Wash bottles are typically kept on the laboratory bench in a secure way so that they can be easily located and so that they do not interfere with other work taking place. Such containment may be by the use of two ring clamps which have similar size attached to a lattice rod. [7]

Related Research Articles

<span class="mw-page-title-main">Alcohol (chemistry)</span> Organic compound with at least one hydroxyl (–OH) group

In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group bound to a saturated carbon atom. Alcohols range from the simple, like methanol and ethanol, to complex, like sugar alcohols and cholesterol. The presence of an OH group strongly modifies the properties of hydrocarbons, conferring hydrophilic (water-loving) properties. The OH group provides a site at which many reactions can occur.

In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent called the mobile phase, which carries it through a system on which a material called the stationary phase is fixed. Because the different constituents of the mixture tend to have different affinities for the stationary phase and are retained for different lengths of time depending on their interactions with its surface sites, the constituents travel at different apparent velocities in the mobile fluid, causing them to separate. The separation is based on the differential partitioning between the mobile and the stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.

<span class="mw-page-title-main">Distillation</span> Method of separating mixtures

Distillation, also classical distillation, is the process of separating the component substances of a liquid mixture of two or more chemically discrete substances; the separation process is realized by way of the selective boiling of the mixture and the condensation of the vapors in a still.

<span class="mw-page-title-main">Ethanol</span> Organic compound (CH₃CH₂OH)

Ethanol is an organic compound with the chemical formula CH3CH2OH. It is an alcohol, with its formula also written as C2H5OH, C2H6O or EtOH, where Et stands for ethyl. Ethanol is a volatile, flammable, colorless liquid with a characteristic wine-like odor and pungent taste. It is a psychoactive recreational drug, and the active ingredient in alcoholic drinks.

<span class="mw-page-title-main">Solvent</span> Substance dissolving a solute resulting in a solution

A solvent is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for polar molecules, and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within the cell.

Raoult's law ( law) is a relation of physical chemistry, with implications in thermodynamics. Proposed by French chemist François-Marie Raoult in 1887, it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component multiplied by its mole fraction in the mixture. In consequence, the relative lowering of vapor pressure of a dilute solution of nonvolatile solute is equal to the mole fraction of solute in the solution.

<span class="mw-page-title-main">Azeotrope</span> Mixture of two or more liquids whose proportions do not change when the mixture is distilled

An azeotrope or a constant heating point mixture is a mixture of two or more components in fluidic states whose proportions cannot be altered or changed by simple distillation. This happens because when an azeotrope is boiled, the vapour has the same proportions of constituents as the unboiled mixture. Azeotropic mixture behavior is important for fluid separation processes.

Chloroform, or trichloromethane, is an organic compound with the formula CHCl3 and a common solvent. It is a very volatile, colorless, strong-smelling, dense liquid produced on a large scale as a precursor to refrigerants and PTFE. Chloroform is a trihalomethane that serves as a powerful anesthetic, euphoriant, anxiolytic, and sedative when inhaled or ingested. Chloroform was used as an anesthetic between the 19th century and the first half of the 20th century. It is miscible with many solvents but it is only very slightly soluble in water.

<span class="mw-page-title-main">Column still</span> Apparatus used to distill liquid mixtures consisting of two columns

A column still, also called a continuous still, patent still or Coffey still, is a variety of still consisting of two columns. Column stills can produce rectified spirit.

<span class="mw-page-title-main">Bromoform</span> Chemical compound

Bromoform is an organic compound with the chemical formula CHBr3. It is a colorless liquid at room temperature, with a high refractive index and a very high density. Its sweet odor is similar to that of chloroform. It is one of the four haloforms, the others being fluoroform, chloroform, and iodoform. It is a brominated organic solvent. Currently its main use is as a laboratory reagent. It is very slightly soluble in water and is miscible with alcohol, benzene, chloroform, ether, petroleum ether, acetone and oils.

<span class="mw-page-title-main">Chemical ionization</span> Ionization technique used in mass [[spectroscopy]]

Chemical ionization (CI) is a soft ionization technique used in mass spectrometry. This was first introduced by Burnaby Munson and Frank H. Field in 1966. This technique is a branch of gaseous ion-molecule chemistry. Reagent gas molecules are ionized by electron ionization to form reagent ions, which subsequently react with analyte molecules in the gas phase to create analyte ions for analysis by mass spectrometry. Negative chemical ionization (NCI), charge-exchange chemical ionization, atmospheric-pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) are some of the common variants of the technique. CI mass spectrometry finds general application in the identification, structure elucidation and quantitation of organic compounds as well as some utility in biochemical analysis. Samples to be analyzed must be in vapour form, or else, must be vapourized before introduction into the source.

<span class="mw-page-title-main">Acetone</span> Organic compound ((CH3)2CO); simplest ketone

Acetone is an organic compound with the formula (CH3)2CO. It is the simplest and smallest ketone. It is a colorless, highly volatile and flammable liquid with a characteristic pungent odor.

Reversed-phase liquid chromatography (RP-LC) is a mode of liquid chromatography in which non-polar stationary phase and polar mobile phases are used for the separation of organic compounds. The vast majority of separations and analyses using high-performance liquid chromatography (HPLC) in recent years are done using the reversed phase mode. In the reversed phase mode, the sample components are retained in the system the more hydrophobic they are.

<span class="mw-page-title-main">Cooling bath</span> Liquid mixture used to maintain low temperatures

A cooling bath or ice bath, in laboratory chemistry practice, is a liquid mixture which is used to maintain low temperatures, typically between 13 °C and −196 °C. These low temperatures are used to collect liquids after distillation, to remove solvents using a rotary evaporator, or to perform a chemical reaction below room temperature.

<span class="mw-page-title-main">Cleaning agent</span> Substance used to remove dirt or other contaminants

Cleaning agents or hard-surface cleaners are substances used to remove dirt, including dust, stains, foul odors, and clutter on surfaces. Purposes of cleaning agents include health, beauty, removing offensive odor, and avoiding the spread of dirt and contaminants to oneself and others. Some cleaning agents can kill bacteria and clean at the same time. Others, called degreasers, contain organic solvents to help dissolve oils and fats.

<span class="mw-page-title-main">Superheated water</span> Pressurized liquid water at temperatures between the boiling and critical points

Superheated water is liquid water under pressure at temperatures between the usual boiling point, 100 °C (212 °F) and the critical temperature, 374 °C (705 °F). It is also known as "subcritical water" or "pressurized hot water". Superheated water is stable because of overpressure that raises the boiling point, or by heating it in a sealed vessel with a headspace, where the liquid water is in equilibrium with vapour at the saturated vapor pressure. This is distinct from the use of the term superheating to refer to water at atmospheric pressure above its normal boiling point, which has not boiled due to a lack of nucleation sites.

<span class="mw-page-title-main">Acetic acid</span> Colorless and faint organic acid found in vinegar

Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water. It has been used, as a component of vinegar, throughout history from at least the third century BC.

Isopropyl alcohol is a colorless, flammable organic compound with a pungent alcoholic odor.

<span class="mw-page-title-main">Extraction (chemistry)</span> Separation of a desired substance from other substances in the sample

Extraction in chemistry is a separation process consisting of the separation of a substance from a matrix. The distribution of a solute between two phases is an equilibrium condition described by partition theory. This is based on exactly how the analyte moves from the initial solvent into the extracting solvent. The term washing may also be used to refer to an extraction in which impurities are extracted from the solvent containing the desired compound.

<span class="mw-page-title-main">Acetyl hypochlorite</span> Chemical compound

Acetyl hypochlorite, also known as chlorine acetate, is a chemical compound with the formula CH3COOCl. It is a photosensitive colorless liquid that is a short lived intermediate in the Hunsdiecker reaction.

References

  1. "Chimactiv - Interactive numerical educational resources for the analysis of complex media". chimactiv.agroparistech.fr. Retrieved 2021-03-15.
  2. Woodrift, Ray (July 1940). "A Convenient Type of Wash Bottle". Journal of Chemical Education. 17 (7): 323. Bibcode:1940JChEd..17..323W. doi:10.1021/ed017p323.
  3. Rudolph, Goetz (October 1977). "Wash bottle for volatile solvents". J. Chem. Educ. 54 (10): 634. Bibcode:1977JChEd..54..634G. doi:10.1021/ed054p634.
  4. B. B., Corson (November 1938). "Absorption efficiency of spiral gas-lift wash bottle". Analytical Chemistry. 10 (11): 646. doi:10.1021/ac50127a015.
  5. Earle R., Caley (July 1929). "Simple graduated wash bottles". Analytical Chemistry. 1 (3): 162. doi:10.1021/ac50067a027.
  6. Nalgene® Wash Bottles, Nalgene® Wash Bottles (October 1973). "Wash Bottles". Analytical Chemistry. 45 (12): 980A. doi:10.1021/ac60334a720.
  7. Kjonaas, Richard A. (June 1984). "Storage of laboratory wash bottles". Journal of Chemical Education. 61 (6): 541. Bibcode:1984JChEd..61..541K. doi:10.1021/ed061p541.