Static mixer

Last updated
Static mixer
Chemineer Kenics Static Mixer.JPG
A promotional sample of a helical static mixer enclosed in a clear tubular housing
UsesMixing
Related items Magnetic stirrer, vortex mixer

A static mixer is a device for the continuous mixing of fluid materials, without moving components. [1] Normally the fluids to be mixed are liquid, but static mixers can also be used to mix gas streams, disperse gas into liquid or blend immiscible liquids. The energy needed for mixing comes from a loss in pressure as fluids flow through the static mixer. [2] One design of static mixer is the plate-type mixer and another common device type consists of mixer elements contained in a cylindrical (tube) or squared housing. Mixer size can vary from about 6 mm to 6 meters diameter. Typical construction materials for static mixer components include stainless steel, polypropylene, Teflon, PVDF, PVC, CPVC and polyacetal. The latest designs involve static mixing elements made of glass-lined steel.

Contents

Design

Plate type

Plate-type static mixer Westfall 2800 Static Mixer with multiple injection ports.jpg
Plate-type static mixer

In the plate type design mixing is accomplished through intense turbulence in the flow. [3]

Housed-elements design

Depiction of how flow division and radial mixing can occur in a static mixer Static mixer flow diagram.png
Depiction of how flow division and radial mixing can occur in a static mixer
Flow division in a static mixer that uses baffles is a function of the number of elements in the mixer Static Mixer Flow Division.png
Flow division in a static mixer that uses baffles is a function of the number of elements in the mixer

In the housed-elements design the static mixer elements consist of a series of baffles made of metal or a variety of plastics. Similarly, the mixer housing can be made of metal or plastic. The housed-elements design incorporates a method for delivering two streams of fluids into the static mixer. As the streams move through the mixer, the non-moving elements continuously blend the materials. Complete mixing depends on many variables including the fluids' properties, tube inner diameter, number of elements and their design. The housed-elements mixer's fixed, typically helical elements can simultaneously produce patterns of flow division and radial mixing:

Applications

A common application is mixing nozzles for two-component adhesives (e.g., epoxy) and sealants (see Resin casting). Other applications include wastewater treatment and chemical processing. [4] Static mixers can be used in the refinery and oil and gas markets as well, for example in bitumen processing [5] or for desalting crude oil. In polymer production, static mixers can be used to facilitate polymerization reactions or for the admixing of liquid additives. [6]

History

The static mixer traces its origins to an invention for a mixing device filed on Nov. 29, 1965 by the Arthur D. Little Company. [7] This device was the housed-elements type and was licensed to the Kenics Corporation and marketed as the Kenics Motionless Mixer. [8] Today, the Kenics brand is owned by National Oilwell Varco. The plate type static mixer patent was issued on November 24, 1998, to Robert W. Glanville of Westfall Manufacturing. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Cavitation</span> Low-pressure voids formed in liquids

Cavitation in fluid mechanics and engineering normally refers to the phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, called "bubbles" or "voids", collapse and can generate shock waves that may damage machinery. These shock waves are strong when they are very close to the imploded bubble, but rapidly weaken as they propagate away from the implosion. Cavitation is a significant cause of wear in some engineering contexts. Collapsing voids that implode near to a metal surface cause cyclic stress through repeated implosion. This results in surface fatigue of the metal, causing a type of wear also called "cavitation". The most common examples of this kind of wear are to pump impellers, and bends where a sudden change in the direction of liquid occurs. Cavitation is usually divided into two classes of behavior: inertial cavitation and non-inertial cavitation.

<span class="mw-page-title-main">Molecular diffusion</span> Thermal motion of liquid or gas particles at temperatures above absolute zero

Molecular diffusion, often simply called diffusion, is the thermal motion of all particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion, originating from the random motion of the molecules. The result of diffusion is a gradual mixing of material such that the distribution of molecules is uniform. Since the molecules are still in motion, but an equilibrium has been established, the result of molecular diffusion is called a "dynamic equilibrium". In a phase with uniform temperature, absent external net forces acting on the particles, the diffusion process will eventually result in complete mixing.

<span class="mw-page-title-main">Tesla turbine</span> Bladeless centripetal flow turbine

The Tesla turbine is a bladeless centripetal flow turbine invented by Nikola Tesla in 1913. Nozzles apply a moving fluid to the edges of a set of discs. The engine uses smooth discs rotating in a chamber to generate rotational movement due to the exchange of momentum between the fluid and the discs. The discs are arranged in an orientation similar to a stack of CDs on a pole.

<span class="mw-page-title-main">Valve</span> Flow control device

A valve is a device or natural object that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways. Valves are technically fittings, but are usually discussed as a separate category. In an open valve, fluid flows in a direction from higher pressure to lower pressure. The word is derived from the Latin valva, the moving part of a door, in turn from volvere, to turn, roll.

<span class="mw-page-title-main">Heat exchanger</span> Equipment used to transfer heat between fluids

A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.

<span class="mw-page-title-main">Magnetic stirrer</span> Laboratory device

A magnetic stirrer or magnetic mixer is a laboratory device that employs a rotating magnetic field to cause a stir bar immersed in a liquid to spin very quickly, thus stirring it. The rotating field may be created either by a rotating magnet or a set of stationary electromagnets, placed beneath the vessel with the liquid. It is used in chemistry and biology as a convenient way to stir small volumes and where other forms of stirring, such as overhead stirrers and stirring rods, may not be viable.

Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:

<span class="mw-page-title-main">End-face mechanical seal</span> Seal made by two rotating parts pressed together at their end faces

In mechanical engineering, an end-face mechanical seal is a type of seal used in rotating equipment, such as pumps, mixers, blowers, and compressors. When a pump operates, the liquid could leak out of the pump between the rotating shaft and the stationary pump casing. Since the shaft rotates, preventing this leakage can be difficult. Earlier pump models used mechanical packing to seal the shaft. Since World War II, mechanical seals have replaced packing in many applications.

<span class="mw-page-title-main">Mixing (process engineering)</span> Process of mechanically stirring a heterogeneous mixture to homogenize it

In industrial process engineering, mixing is a unit operation that involves manipulation of a heterogeneous physical system with the intent to make it more homogeneous. Familiar examples include pumping of the water in a swimming pool to homogenize the water temperature, and the stirring of pancake batter to eliminate lumps (deagglomeration).

<span class="mw-page-title-main">Unit operation</span>

In chemical engineering and related fields, a unit operation is a basic step in a process. Unit operations involve a physical change or chemical transformation such as separation, crystallization, evaporation, filtration, polymerization, isomerization, and other reactions. For example, in milk processing, the following unit operations are involved: homogenization, pasteurization, and packaging. These unit operations are connected to create the overall process. A process may require many unit operations to obtain the desired product from the starting materials, or feedstocks.

<span class="mw-page-title-main">Chemical reactor</span> Enclosed volume where interconversion of compounds takes place

A chemical reactor is an enclosed volume in which a chemical reaction takes place. In chemical engineering, it is generally understood to be a process vessel used to carry out a chemical reaction, which is one of the classic unit operations in chemical process analysis. The design of a chemical reactor deals with multiple aspects of chemical engineering. Chemical engineers design reactors to maximize net present value for the given reaction. Designers ensure that the reaction proceeds with the highest efficiency towards the desired output product, producing the highest yield of product while requiring the least amount of money to purchase and operate. Normal operating expenses include energy input, energy removal, raw material costs, labor, etc. Energy changes can come in the form of heating or cooling, pumping to increase pressure, frictional pressure loss or agitation.

<span class="mw-page-title-main">Impeller</span> Rotor used to increase (or decrease in case of turbines) the pressure and flow of a fluid or gas

An impeller or impellor is a driven rotor used to increase the pressure and flow of a fluid. It is the opposite of a turbine, which extracts energy from, and reduces the pressure of, a flowing fluid.

<span class="mw-page-title-main">Dust collector</span>

A dust collector is a system used to enhance the quality of air released from industrial and commercial processes by collecting dust and other impurities from air or gas. Designed to handle high-volume dust loads, a dust collector system consists of a blower, dust filter, a filter-cleaning system, and a dust receptacle or dust removal system. It is distinguished from air purifiers, which use disposable filters to remove dust.

<span class="mw-page-title-main">Fluidized bed reactor</span> Reactor carrying multiphase chemical reactions with solid particles suspended in an ascending fluid

A fluidized bed reactor (FBR) is a type of reactor device that can be used to carry out a variety of multiphase chemical reactions. In this type of reactor, a fluid is passed through a solid granular material at high enough speeds to suspend the solid and cause it to behave as though it were a fluid. This process, known as fluidization, imparts many important advantages to an FBR. As a result, FBRs are used for many industrial applications.

A regenerative heat exchanger, or more commonly a regenerator, is a type of heat exchanger where heat from the hot fluid is intermittently stored in a thermal storage medium before it is transferred to the cold fluid. To accomplish this the hot fluid is brought into contact with the heat storage medium, then the fluid is displaced with the cold fluid, which absorbs the heat.

A high-shear mixer disperses, or transports, one phase or ingredient into a main continuous phase (liquid), with which it would normally be immiscible. A rotor or impeller, together with a stationary component known as a stator, or an array of rotors and stators, is used either in a tank containing the solution to be mixed, or in a pipe through which the solution passes, to create shear. A high-shear mixer can be used to create emulsions, suspensions, lyosols, and granular products. It is used in the adhesives, chemical, cosmetic, food, pharmaceutical, and plastics industries for emulsification, homogenization, particle size reduction, and dispersion.

Continuous reactors carry material as a flowing stream. Reactants are continuously fed into the reactor and emerge as continuous stream of product. Continuous reactors are used for a wide variety of chemical and biological processes within the food, chemical and pharmaceutical industries. A survey of the continuous reactor market will throw up a daunting variety of shapes and types of machine. Beneath this variation however lies a relatively small number of key design features which determine the capabilities of the reactor. When classifying continuous reactors, it can be more helpful to look at these design features rather than the whole system.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

<span class="mw-page-title-main">Baffle (heat transfer)</span> Fluid-flow-directing vane or panel

Baffles are flow-directing or obstructing vanes or panels used to direct a flow of liquid or gas. It is used in some household stoves and in some industrial process vessels (tanks), such as shell and tube heat exchangers, chemical reactors, and static mixers.

Industrial agitators are machines used to stir or mix fluids in industries that process products in the chemical, food, pharmaceutical and cosmetic industries. Their uses include:

References

  1. Paul, Edward L. (2004). Handbook of Industrial Mixing-Science and Practice. Hoboken NJ: John Wiley & Sons. pp. 399 section 7-3.1.4. ISBN   0471269190.
  2. Albright, Lyle F. (2008). Albright's Chemical Engineering Handbook. Boca Raton FL: CRC Press. p. 682. ISBN   978-0824753627.
  3. Gieseke, Thomas. "An Evaluation of the Hydrodynamics Mechanisms Which Drive the Performance of the Westfall Static Mixer". pp 28. US Naval Undersea Warfare Center and Westfall Manufacturing. Retrieved 19 May 2016.
  4. Bor, Thomas P., "The Static Mixer as a Chemical Reactor", British Chemical Engineering, Vol. 16, No. 7, 1971.
  5. "Westfall Variable Flow Static Mixer Enables Bitumen Pumping via Pipeline". Marketwire. December 4, 2012.
  6. "Markets & Applications". Sulzer Chemtech. Archived from the original on 2012-06-30. Retrieved 2011-07-04.
  7. C. D. Armeniades, et al., U.S. patent 3,286,992 Mixing Device issued November 29, 1965
  8. Arons, Irv (2008-07-23). "ADL Chronicles: The Disposable "Motionless Mixer"". Adlittlechronicles.blogspot.com. Retrieved 2011-07-04.
  9. U S Patent Office. "US Patent Static Mixer".