This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Thermoplastic polyurethane (TPU) is any of a class of polyurethane plastics with many properties, including elasticity, transparency, and resistance to oil, grease, and abrasion. Technically, they are thermoplastic elastomers consisting of linear segmented block copolymers composed of hard and soft segments.
TPU is a block copolymer consisting of alternating sequences of hard and soft segments or domains formed by the reaction of (1) diisocyanates with short-chain diols (so-called chain extenders) and (2) diisocyanates with long-chain diols. By varying the ratio, structure and/or molecular weight of the reaction compounds, an enormous variety of different TPU can be produced. This allows urethane chemists to fine-tune the polymer's structure to the desired final properties of the material.
A TPU resin consists of linear polymeric chains in block-structures. Such chains contain low polarity segments which are rather long (called soft segments), alternating with shorter, high polarity segments (called hard segments). Both types of segments are linked by covalent links so that they actually form block-copolymers. The miscibility of the hard and soft segments in TPU depends on the differences in their glass transition temperature (Tg) [1] which occurs at the onset of micro-Brownian segmental motion, identifiable by dynamic mechanical spectra. For an immiscible TPU, the loss modulus spectrum typically shows double peaks, each of which is assigned to the Tg of one component. If the two components are miscible, the TPU will be characterized by a single broad peak whose position lies between that of the two original Tg peaks of the pure components.
The polarity of the hard pieces creates a strong attraction between them, which causes a high degree of aggregation and order in this phase, forming crystalline or pseudo crystalline areas located in a soft and flexible matrix. This so-called phase separation between both blocks can be more or less important, depending on the polarity and the molecular weight of the flexible chain, the production conditions, etc. The crystalline or pseudo crystalline areas act as physical cross-links, which account for the high elasticity level of TPU, whereas the flexible chains will impart the elongation characteristics to the polymer.
These "pseudo crosslinks", however, disappear under the effect of heat, and thus the classical extrusion, injection molding, and calendering processing methods are applicable to these materials. Consequently, TPU scrap can be reprocessed.
TPU has many applications, including automotive instrument panels, caster wheels, power tools, sporting goods, medical devices, drive belts, footwear, inflatable rafts, fire hoses, buffer weight tips and a variety of extruded film, sheet and profile uses. [2] [3] TPU is also a popular material found in flexible outer cases of devices like mobile phones and keyboard protectors. [4]
TPU is well known for its applications in wire and cable jacketing, hose and tube, in adhesive and textile coating applications, and as an impact modifier of other polymers. [5] It is also used in high-performance films, such as high impact resistant glass structures.
TPU is the thermoplastic elastomer used in fused filament deposition (FFD) 3D printing. The absence of warping and lack of need for primer makes it an ideal filament for 3D printers when objects need to be flexible and elastic. Since TPU is a thermoplastic, it can be melted by the 3D printer's hotend, printed, then cooled into an elastic solid. TPU powders are also used for other 3D printing processes, such as selective laser sintering (SLS) and 3D inkjet printing. It is also used in large vertical injection or extrusion moulding machines to print directly without the intermediate step of filament extrusion or powder preparation.
Properties of commercially available TPU include:
The currently available TPUs can be divided mainly into two groups, based on soft segment chemistry:
The differences between these two groups are outlined in the table below.
Table 1: Main differences between polyester- and polyether-based TPU. [6]
(A = excellent; B = good; C = acceptable; D = poor; F = very poor)
Property | Polyester-based TPU | Polyether-based TPU |
---|---|---|
Abrasion resistance | A | A |
Mechanical properties | A | B |
Low temperature flexibility | B | A |
Heat aging | B | D |
Hydrolysis resistance | D | A |
Chemical resistance | A | C |
Microbial resistance | D | A |
Adhesion strength | B | D |
Injectability | B | B |
TPU is the right choice when flexibility at low temperatures and/or an abrasion resistant thermoplastic elastomer (TPE) is requested. Polyether-based TPU in cases where additional excellent hydrolysis and microbial resistance is required, as well as in cases where extreme low-temperature flexibility is important. Ester-based TPU in cases where oil and grease resistance is more relevant.
When stable light colour and non-yellowing performance are required, aliphatic TPU based on aliphatic isocyanates is used.
BASF has pioneered crosslinking during TPU transformation, made possible by adding liquid crosslinkers or using a solid granulated additive masterbatch. Plant-based bio TPU has been developed for green thermoplastic elastomer applications by BASF, Merquinsa-Lubrizol and GRECO, marketed as Elastollan N, Pearlthane ECO and Isothane respectively.
TPU may contain siloxanes, some of which are considered substances of very high concern by the European Union. [7] [8]
A polymer is a substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeating subunits derived from one or more species of monomers. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.
Polyurethane refers to a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane is produced from a wide range of starting materials. This chemical variety produces polyurethanes with different chemical structures leading to many different applications. These include rigid and flexible foams, and coatings, adhesives, electrical potting compounds, and fibers such as spandex and polyurethane laminate (PUL). Foams are the largest application accounting for 67% of all polyurethane produced in 2016.
Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bottles, cups, jars, etc.). As of 2017, over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market.
A thermoplastic, or thermosoftening plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.
Acrylonitrile butadiene styrene (ABS) (chemical formula (C8H8)x·(C4H6)y·(C3H3N)z ) is a common thermoplastic polymer. Its glass transition temperature is approximately 105 °C (221 °F). ABS is amorphous and therefore has no true melting point.
In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.
Styrene-butadiene or styrene-butadiene rubber (SBR) describe families of synthetic rubbers derived from styrene and butadiene. These materials have good abrasion resistance and good aging stability when protected by additives. In 2012, more than 5.4 million tonnes of SBR were processed worldwide. About 50% of car tires are made from various types of SBR. The styrene/butadiene ratio influences the properties of the polymer: with high styrene content, the rubbers are harder and less rubbery. SBR is not to be confused with the thermoplastic elastomer, styrene-butadiene block copolymer, although being derived from the same monomers.
An elastomer is a polymer with viscoelasticity and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. The term, a portmanteau of elastic polymer, is often used interchangeably with rubber, although the latter is preferred when referring to vulcanisates. Each of the monomers which link to form the polymer is usually a compound of several elements among carbon, hydrogen, oxygen and silicon. Elastomers are amorphous polymers maintained above their glass transition temperature, so that considerable molecular reconformation is feasible without breaking of covalent bonds. At ambient temperatures, such rubbers are thus relatively compliant and deformable.
An O-ring, also known as a packing or a toric joint, is a mechanical gasket in the shape of a torus; it is a loop of elastomer with a round cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, forming a seal at the interface.
EPDM rubber is a type of synthetic rubber that is used in many applications.
In polymer chemistry, step-growth polymerization refers to a type of polymerization mechanism in which bi-functional or multifunctional monomers react to form first dimers, then trimers, longer oligomers and eventually long chain polymers. Many naturally-occurring and some synthetic polymers are produced by step-growth polymerization, e.g. polyesters, polyamides, polyurethanes, etc. Due to the nature of the polymerization mechanism, a high extent of reaction is required to achieve high molecular weight. The easiest way to visualize the mechanism of a step-growth polymerization is a group of people reaching out to hold their hands to form a human chain—each person has two hands. There also is the possibility to have more than two reactive sites on a monomer: In this case branched polymers production take place.
Hot-melt adhesive (HMA), also known as hot glue, is a form of thermoplastic adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which the user pushes through the gun either with a mechanical trigger mechanism on the gun, or with direct finger pressure. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is sticky when hot, and solidifies in a few seconds to one minute. Hot-melt adhesives can also be applied by dipping or spraying, and are popular with hobbyists and crafters both for affixing and as an inexpensive alternative to resin casting.
Thermoplastic elastomers (TPE), sometimes referred to as thermoplastic rubbers (TPR), are a class of copolymers or a physical mix of polymers that consist of materials with both thermoplastic and elastomeric properties.
Thermoplastic olefin, thermoplastic polyolefin (TPO), or olefinic thermoplastic elastomers refer to polymer/filler blends usually consisting of some fraction of a thermoplastic, an elastomer or rubber, and usually a filler.
Polyether block amide or PEBA is a thermoplastic elastomer (TPE). It is known under the tradename of PEBAX® (Arkema) and VESTAMID® E. It is a block copolymer obtained by polycondensation of a carboxylic acid polyamide with an alcohol termination polyether, PEG). The general chemical structure is:
Electron-beam processing or electron irradiation (EBI) is a process that involves using electrons, usually of high energy, to treat an object for a variety of purposes. This may take place under elevated temperatures and nitrogen atmosphere. Possible uses for electron irradiation include sterilization, alteration of gemstone colors, and cross-linking of polymers.
Novel polymeric alloy (NPA) is a polymeric alloy composed of polyolefin and thermoplastic engineering polymer with enhanced engineering properties. NPA was developed for use in geosynthetics. One of the first commercial NPA applications was in the manufacturer of polymeric strips used to form Neoloy® cellular confinement systems (geocells).
Acrylonitrile styrene acrylate (ASA), also called acrylic styrene acrylonitrile, is an amorphous thermoplastic developed as an alternative to acrylonitrile butadiene styrene (ABS), that has improved weather resistance. It is an acrylate rubber-modified styrene acrylonitrile copolymer. It is used for general prototyping in 3D printing, where its UV resistance and mechanical properties make it an excellent material for use in fused filament fabrication printers, particularly for outdoor applications. ASA is also widely used in the automotive industry.
Covalent adaptable networks (CANs) are a type of polymer material that closely resemble thermosetting polymers (thermosets). However, they are distinguished from thermosets by the incorporation of dynamic covalent chemistry into the polymer network. When a stimulus (for example heat, light, pH, ...) is applied to the material, these dynamic bonds become active and can be broken or exchanged with other pending functional groups, allowing the polymer network to change its topology. This introduces reshaping, (re)processing and recycling into thermoset-like materials.
Polyoxetane (POX), or poly(oxetane), is synthetic organic heteroatomic thermoplastic polymer with molecular formula (–OCH2CH2CH2–)n. It is polymerized from oxetane monomer, which is a four-membered cyclic ether.