Diphenyl carbonate

Last updated
Diphenyl carbonate
Diphenyl carbonate 200.svg
Diphenyl-carbonate-from-xtal-3D-bs-17.png
Names
Preferred IUPAC name
Diphenyl carbonate
Other names
Phenyl carbonate, di-
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.002.733 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C13H10O3/c14-13(15-11-7-3-1-4-8-11)16-12-9-5-2-6-10-12/h1-10H Yes check.svgY
    Key: ROORDVPLFPIABK-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C13H10O3/c14-13(15-11-7-3-1-4-8-11)16-12-9-5-2-6-10-12/h1-10H
    Key: ROORDVPLFPIABK-UHFFFAOYAY
  • O=C(Oc1ccccc1)Oc2ccccc2
Properties
C13H10O3
Molar mass 214.216 g/mol
Density 1.1215 g/cm3 at 87 °C
Melting point 83 °C (181 °F; 356 K)
Boiling point 306 °C (583 °F; 579 K)
insoluble
Solubility soluble in ethanol, diethyl ether, carbon tetrachloride, acetic acid [1]
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Warning
H302, H410, H411
P264, P270, P273, P301+P312, P330, P391, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Diphenyl carbonate is the organic compound with the formula (C6H5O)2CO. It is classified as an acyclic carbonate ester. It is a colorless solid. It is both a monomer in combination with bisphenol A in the production of polycarbonate polymers [2] [3] and a product of the decomposition of polycarbonates. [4]

Contents

Production

World production capacity of diphenyl carbonate was 254,000 tonnes in 2002, and phosgenation of phenol is the most significant route. [5] Phosgenation of phenol can proceed under various conditions. The net reaction is as follows:

2 PhOH + COCl2 → PhOCO2Ph + 2 HCl

The use of phosgene can be avoided by the oxidative carbonylation of phenol with carbon monoxide: [2]

2 PhOH + CO + [O] → PhOCO2Ph + H2O

Dimethyl carbonate can also be transesterified with phenol:

CH3OCO2CH3 + 2 PhOH → PhOCO2Ph + 2 MeOH

The kinetics and thermodynamics of this reaction are not favorable. For example, at higher temperatures, dimethyl carbonate undesirably methylates phenol to give anisole. [2] Despite this, diphenyl carbonate made from non-phosgene sources has become a widely used raw material for the synthesis of bisphenol-A-polycarbonate in a melt polycondensation process. [6]

Applications

Polycarbonates can be prepared by transesterifying diphenyl carbonate with bisphenol A. Phenol is a co-product. These polycarbonates may be recycled by reversing the process: transesterifying the polycarbonate with phenol to yield diphenyl carbonate and bisphenol A. [2]

Related Research Articles

<span class="mw-page-title-main">Phenols</span> Chemical compounds in which hydroxyl group is attached directly to an aromatic ring

In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups (−OH) bonded directly to an aromatic hydrocarbon group. The simplest is phenol, C
6
H
5
OH
. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule.

<span class="mw-page-title-main">Phenol</span> Organic compound (C6H5OH)

Phenol is an aromatic organic compound with the molecular formula C6H5OH. It is a white crystalline solid that is volatile. The molecule consists of a phenyl group bonded to a hydroxy group. Mildly acidic, it requires careful handling because it can cause chemical burns.

<span class="mw-page-title-main">Phosgene</span> Toxic gaseous compound (COCl2)

Phosgene is an organic chemical compound with the formula COCl2. It is a toxic, colorless gas; in low concentrations, its musty odor resembles that of freshly cut hay or grass. It can be thought of chemically as the double acyl chloride analog of carbonic acid, or structurally as formaldehyde with the hydrogen atoms replaced by chlorine atoms. Phosgene is a valued and important industrial building block, especially for the production of precursors of polyurethanes and polycarbonate plastics.

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

<span class="mw-page-title-main">Polycarbonate</span> Family of polymers

Polycarbonates (PC) are a group of thermoplastic polymers containing carbonate groups in their chemical structures. Polycarbonates used in engineering are strong, tough materials, and some grades are optically transparent. They are easily worked, molded, and thermoformed. Because of these properties, polycarbonates find many applications. Polycarbonates do not have a unique resin identification code (RIC) and are identified as "Other", 7 on the RIC list. Products made from polycarbonate can contain the precursor monomer bisphenol A (BPA).

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Bisphenol A</span> Chemical compound used in plastics manufacturing

Bisphenol A (BPA) is a chemical compound primarily used in the manufacturing of various plastics. It is a colourless solid which is soluble in most common organic solvents, but has very poor solubility in water. BPA is produced on an industrial scale by the condensation reaction of phenol and acetone. Global production in 2022 was estimated to be in the region of 10 million tonnes.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

<span class="mw-page-title-main">Oxalyl chloride</span> Chemical compound

Oxalyl chloride is an organic chemical compound with the formula Cl−C(=O)−C(=O)−Cl. This colorless, sharp-smelling liquid, the diacyl chloride of oxalic acid, is a useful reagent in organic synthesis.

<span class="mw-page-title-main">Phosphoryl chloride</span> Chemical compound

Phosphoryl chloride is a colourless liquid with the formula POCl3. It hydrolyses in moist air releasing phosphoric acid and fumes of hydrogen chloride. It is manufactured industrially on a large scale from phosphorus trichloride and oxygen or phosphorus pentoxide. It is mainly used to make phosphate esters.

<span class="mw-page-title-main">Carbonate ester</span> Chemical group (R–O–C(=O)–O–R)

In organic chemistry, a carbonate ester is an ester of carbonic acid. This functional group consists of a carbonyl group flanked by two alkoxy groups. The general structure of these carbonates is R−O−C(=O)−O−R' and they are related to esters, ethers and also to the inorganic carbonates.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

<span class="mw-page-title-main">Propylene carbonate</span> Chemical compound

Propylene carbonate (often abbreviated PC) is an organic compound with the formula C4H6O3. It is a cyclic carbonate ester derived from propylene glycol. This colorless and odorless liquid is useful as a polar, aprotic solvent. Propylene carbonate is chiral, but is used as the racemic mixture in most contexts.

<span class="mw-page-title-main">Dimethyl carbonate</span> Chemical compound

Dimethyl carbonate (DMC) is an organic compound with the formula OC(OCH3)2. It is a colourless, flammable liquid. It is classified as a carbonate ester. This compound has found use as a methylating agent and as a co-solvent in lithium-ion batteries. Notably, dimethyl carbonate is a weak methylating agent, and is not considered as a carcinogen. Instead, dimethyl carbonate is often considered to be a green reagent, and it is exempt from the restrictions placed on most volatile organic compounds (VOCs) in the United States.

<span class="mw-page-title-main">Ethylene carbonate</span> Chemical compound

Ethylene carbonate (sometimes abbreviated EC) is the organic compound with the formula (CH2O)2CO. It is classified as the cyclic carbonate ester of ethylene glycol and carbonic acid. At room temperature (25 °C) ethylene carbonate is a transparent crystalline solid, practically odorless and colorless, and somewhat soluble in water. In the liquid state (m.p. 34-37 °C) it is a colorless odorless liquid.

<span class="mw-page-title-main">Dimethyl oxalate</span> Chemical compound

Dimethyl oxalate is an organic compound with the formula (CO2CH3)2 or (CH3)2C2O4. It is the dimethyl ester of oxalic acid. Dimethyl oxalate is a colorless or white solid that is soluble in water.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

<span class="mw-page-title-main">Diphenyl ether</span> Chemical compound

Diphenyl ether is the organic compound with the formula (C6H5)2O. It is a colorless, low-melting solid. This, the simplest diaryl ether, has a variety of niche applications.

<span class="mw-page-title-main">Dimethylcarbamoyl chloride</span> Chemical compound

Dimethylcarbamoyl chloride (DMCC) is a reagent for transferring a dimethylcarbamoyl group to alcoholic or phenolic hydroxyl groups forming dimethyl carbamates, usually having pharmacological or pesticidal activities. Because of its high toxicity and its carcinogenic properties shown in animal experiments and presumably also in humans, dimethylcarbamoyl chloride can only be used under stringent safety precautions.

References

  1. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, FL: CRC Press, pp. 3–238, ISBN   0-8493-0594-2
  2. 1 2 3 4 Hans-Josef Buysch (2000). "Carbonic Esters". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_197. ISBN   978-3527306732.
  3. Wittcoff, Harold; Reuben, B. G.; Plotkin, Jeffrey S. (2004), Industrial Organic Chemicals, Wiley-IEEE, p. 278, ISBN   978-0-471-44385-8 , retrieved 2009-07-20
  4. ASM International (2003), Characterization and Failure Analysis of Plastics, ASM International, p. 369, ISBN   978-0-87170-789-5 , retrieved 2009-07-20
  5. "Diphenyl Carbonate" (PDF). IPSC Inchem. Archived from the original (PDF) on 2012-01-04. Retrieved 2012-08-01.
  6. Fukuoka, Shinsuke (2012). Non-Phosgene Polycarbonate from CO2 - Industrialization of Green Chemical Process. Nova Science Publishers. ISBN   9781614708773.