Friedrich Kohlrausch (physicist)

Last updated • 6 min readFrom Wikipedia, The Free Encyclopedia
Friedrich Kohlrausch
Friedrich Kohlrausch.jpg
Friedrich Wilhelm Georg Kohlrausch (1840–1910)
Born(1840-10-14)14 October 1840
Died17 January 1910(1910-01-17) (aged 69)
Nationality German
Alma mater University of Erlangen
University of Göttingen
Known for Work on electrolytes
Conductometry
Kohlrausch bridge
Awards Pour le Mérite (1896)
ForMemRS (1895)
Scientific career
Fields Physicist
Institutions University of Frankfurt/Main
University of Göttingen
ETH Zurich
Darmstadt University
University of Würzburg
Strasbourg University
Humboldt University
Doctoral advisor Wilhelm Eduard Weber
Doctoral students Walther Nernst
Erasmus Kittler
Other notable students Svante Arrhenius
Notes
He was the son of Rudolf Kohlrausch, the grandson of Friedrich Kohlrausch, and the nephew of Otto Kohlrausch.

Friedrich Wilhelm Georg Kohlrausch (14 October 1840 – 17 January 1910) was a German physicist who investigated the conductive properties of electrolytes and contributed to knowledge of their behaviour. He also investigated elasticity, thermoelasticity, and thermal conduction as well as magnetic and electrical precision measurements.

Contents

Nowadays, Friedrich Kohlrausch is classed as one of the most important experimental physicists. His early work helped to extend the absolute system of Carl Friedrich Gauss and Wilhelm Weber to include electrical and magnetic measuring units.

Biography

Education

Son of Rudolf Kohlrausch, Friedrich Wilhelm Georg Kohlrausch was born on October 14, 1840, in Rinteln, Germany. After studying physics at Erlangen and Göttingen, Friedrich Kohlrausch completed his doctorate in Göttingen.

Teaching

After a two-year work as a lecturer in Frankfurt, Kohlrausch was appointed a professor of physics at the University of Göttingen (1866–70). During 1870 Kohlrausch became a professor at ETH Zurich in Switzerland. One year later, he moved to the Darmstadt University of Technology in Germany.

In 1875, he responded to an offer from the University of Würzburg in southern Germany, where he subsequently conducted his experiments in quantity determination and the conductivity of electrolytes. From 1888 he researched and taught at Strasbourg University.

He refused a professorship at the Humboldt University in Berlin in 1894, but from 1900 he was also a professor there. He was elected an International Honorary Member of the American Academy of Arts and Sciences in 1900 and an International Member of the United States National Academy of Sciences in 1901. [1] [2] He was elected a member of the Royal Swedish Academy of Sciences during 1902. He was elected to the American Philosophical Society in 1909. [3]

Research work

Kohlrausch was an important researcher of electrochemistry for many reasons. First, the experiments from which he deduced his law of independent migration of ions became canonical and disseminated from Kohlrausch's laboratories in Göttingen, Zürich, and Darmstadt; Svante Arrhenius, Wilhelm Ostwald and Jacobus Henricus van 't Hoff, the original Ionists, all trained with methods and equipment of Kohlrauschian lineage. Moreover, because Kohlrausch also continued to test and confirm the Ionist theory after it had been first proposed, his work tied "measuring physics" and its consequent capability of producing plenty of empirical data to the results and methods of the Ionists and their devotees.

Electrolyte conductivity in solution

In 1874 he demonstrated that an electrolyte has a definite and constant amount of electrical resistance. By observing the dependence of conductivity upon dilution, he could determine the transfer velocities of the ions (charged atoms or molecules) in solution. He used alternating current to prevent the formation of electrolysis products (H2 and O2 gas evolution, or metal deposition); this enabled him to obtain very precise results.

From 1875 to 1879, he examined numerous salt solutions, acids and solutions of other materials. His efforts resulted in the law of the independent migration of ions, that is, each type of migrating ion has a specific limiting molar conductivity no matter what combination of ions are in solution, and therefore that a solution's electrical resistance is due only to the migrating ions of a given substances. Kohlrausch showed for weak (incompletely dissociated) electrolytes that the more dilute a solution, the greater its molar conductivity due to increased ionic dissociation.

Measuring techniques and instruments

During 1895 he succeeded Hermann von Helmholtz as President of the Physikalisch-Technische Reichsanstalt (PTR – Imperial Physical Technical Institute), an office which he held until 1905.

Here, as in the past, his activities were focused on experimental and instrumental physics: he constructed instruments and devised new measuring techniques to examine electrolytic conduction in solutions. He concluded the setup of the PTR, a task which had not yet been completed on the death of its first president. He introduced fixed regulations, work schedules and working hours for the Institute.

Under direction of Kohlrausch, the PTR created numerous standards and calibration standards which were also used internationally outside Germany.

Kohlrausch was intent on creating optimum working conditions in the laboratories and to shield the labs from unwanted external influences. For six years, for instance, he fought against a streetcar line which was due to be laid near the PTR. However, before the streetcar was to make its first journey, the institute succeeded in developing an astatic torsion magnetometer which was uninfluenced by disturbing electromagnetic fields. The use of this instrument and the shielded wire galvanometer developed by du Bois and Rubens meant that precision electrical and magnetic work continued to be possible.

Over the years, Kohlrausch added experiments which met the needs of physical chemistry and electrical technology in particular. He improved precision measuring instruments and developed numerous measuring methods in almost all of the fields of physics known during his lifetime, including a reflectivity meter, a tangent galvanometer, and various types of magnetometers and dynamometers. The Kohlrausch bridge, which he invented at that time for the purpose of measuring conductivity, is still well known today. Like Helmholtz and Siemens, Kohlrausch also saw the possibilities inherent in applied and basic research in the natural sciences and technology. He lay the foundations for scientific knowledge which promoted and advanced industry and technology. The PTR developed standardized precision instruments for university research institutes and industrial laboratories. It introduced uniform electrical units for Germany and also played a significant role in their international usage. In the period to 1905, there were many examples of the importance of the PTR for German industry, in particular for the high technologies of the time – the electrical, optical and mechanical industries.

Overall, Kohlrausch was involved in the measurement of electrical, magnetic and electrochemical phenomena for almost 50 years. In 1905 Kohlrausch retired from his post as President of the PTR.

Friedrich Kohlrausch died in Marburg on 17 January 1910 at the age of 69.

Writings

In the University of Göttingen, Kohlrausch documented his practical experiments resulting in the book Leitfaden der praktischen Physik (Guidelines to Practical Physics), which was published in 1870 as the first book of its type in Germany. It contained not only descriptions of experiments, experimental setups and measuring techniques, but also tables of physical quantities. It was issued in many editions (the 9th enlarged and revised edition of 1901 being entitled Lehrbuch der praktischen Physik; a more elementary work based on it being entitled Kleiner Leitfaden der praktischen Physik) and translated into English. It was considered the standard work on physical laboratory methods and measurements.

To this day, the textbook Praktische Physik (Practical Physics), which originated in Kohlrausch's Leitfaden der praktischen Physik, is standard reading for physicists and engineers in Germany. This is attributable, above all, to the detailed descriptions provided of the measuring methods that form the basis of technical and experimental applications in many fields in physics.

Kohlrausch was also the author of Ueber den absoluten Leitungswiderstand des Quecksilbers (On the electrical resistance of mercury, 1888), and of many papers contributed to the Annalen der Physik und Chemie , and other scientific journals.

List of works

Further reading

Related Research Articles

<span class="mw-page-title-main">Wilhelm Eduard Weber</span> German physicist (1804–1891)

Wilhelm Eduard Weber was a German physicist and, together with Carl Friedrich Gauss, inventor of the first electromagnetic telegraph.

<span class="mw-page-title-main">Physikalisch-Technische Bundesanstalt</span> National metrology institute of the German Federal Republic

The Physikalisch-Technische Bundesanstalt (PTB) is the national metrology institute of the Federal Republic of Germany, with scientific and technical service tasks. It is a higher federal authority and a public-law institution directly under federal government control, without legal capacity, under the auspices of the Federal Ministry for Economic Affairs and Climate Action.

<span class="mw-page-title-main">Walther Bothe</span> German nuclear physicist and Nobel Prize shared with Max Born (1891–1957)

Walther Wilhelm Georg Bothe was a German nuclear physicist known for the development of coincidence methods to study particle physics.

<span class="mw-page-title-main">Max von Laue</span> German physicist (1879–1960)

Max Theodor Felix von Laue was a German physicist who received the Nobel Prize in Physics in 1914 for his discovery of the diffraction of X-rays by crystals.

<span class="mw-page-title-main">Walther Gerlach</span> German physicist (1889–1979)

Walther Gerlach was a German physicist who co-discovered, through laboratory experiment, spin quantization in a magnetic field, the Stern–Gerlach effect. The experiment was conceived by Otto Stern in 1921 and successfully conducted first by Gerlach in early 1922.

Electrochemistry, a branch of chemistry, went through several changes during its evolution from early principles related to magnets in the early 16th and 17th centuries, to complex theories involving conductivity, electric charge and mathematical methods. The term electrochemistry was used to describe electrical phenomena in the late 19th and 20th centuries. In recent decades, electrochemistry has become an area of current research, including research in batteries and fuel cells, preventing corrosion of metals, the use of electrochemical cells to remove refractory organics and similar contaminants in wastewater electrocoagulation and improving techniques in refining chemicals with electrolysis and electrophoresis.

The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration.

<span class="mw-page-title-main">Surface conductivity</span>

Surface conductivity is an additional conductivity of an electrolyte in the vicinity of the charged interfaces. Surface and volume conductivity of liquids correspond to the electrically driven motion of ions in an electric field. A layer of counter ions of the opposite polarity to the surface charge exists close to the interface. It is formed due to attraction of counter-ions by the surface charges. This layer of higher ionic concentration is a part of the interfacial double layer. The concentration of the ions in this layer is higher as compared to the ionic strength of the liquid bulk. This leads to the higher electric conductivity of this layer.

<span class="mw-page-title-main">Louis Winslow Austin</span> American physicist

Louis Winslow Austin was an American physicist known for his research on long-range radio transmissions.

<span class="mw-page-title-main">Rudolf Kohlrausch</span> German physicist

Rudolf Hermann Arndt Kohlrausch was a German physicist.

<span class="mw-page-title-main">Eduard Grüneisen</span> German physicist

Eduard August Grüneisen was a German physicist. He is best known for the Grüneisen parameter, the Mie–Grüneisen equation of state and the Bloch–Grüneisen temperature. He served as director of the Physics Department at the University of Marburg for 20 years, and was editor of Annalen der Physik together with Max Planck.

<span class="mw-page-title-main">Margaret Eliza Maltby</span> American physicist (1860–1944)

Margaret Eliza Maltby was an American physicist notable for her measurement of high electrolytic resistances and the conductivity of very dilute solutions. Maltby was the first woman to earn a Bachelor of Science degree from the Massachusetts Institute of Technology, and the first woman to earn a Ph.D. in physics from any German university.

<span class="mw-page-title-main">Solid state ionics</span>

Solid-state ionics is the study of ionic-electronic mixed conductor and fully ionic conductors and their uses. Some materials that fall into this category include inorganic crystalline and polycrystalline solids, ceramics, glasses, polymers, and composites. Solid-state ionic devices, such as solid oxide fuel cells, can be much more reliable and long-lasting, especially under harsh conditions, than comparable devices with fluid electrolytes.

<span class="mw-page-title-main">Conductivity (electrolytic)</span> Measure of the ability of a solution containing electrolytes to conduct electricity

Conductivity or specific conductance of an electrolyte solution is a measure of its ability to conduct electricity. The SI unit of conductivity is siemens per meter (S/m).

Beta dispersion is the phenomenon associated with the ability of a biological cell membrane to filter out low frequency currents and allow high frequency currents to pass through. It was originally hypothesized by Rudolf Höber in 1910 and confirmed through a series of experiments between 1910 and 1913.

Conductometry is a measurement of electrolytic conductivity to monitor a progress of chemical reaction. Conductometry has notable application in analytical chemistry, where conductometric titration is a standard technique. In usual analytical chemistry practice, the term conductometry is used as a synonym of conductometric titration while the term conductimetry is used to describe non-titrative applications. Conductometry is often applied to determine the total conductance of a solution or to analyze the end point of titrations that include ions.

In chemistry, ion transport number, also called the transference number, is the fraction of the total electric current carried in an electrolyte by a given ionic species i:

<span class="mw-page-title-main">Eduard Riecke</span> German physicist

Eduard Riecke was a German experimental physicist.

<span class="mw-page-title-main">Wilhelm von Beetz</span> German physicist

Wilhelm von Beetz was a German physicist, known for his studies of electrical conductivity properties.

<span class="mw-page-title-main">Alexander Eichenwald</span>

Alexander Alexandrovich Eichenwald was a Russian experimental physicist who worked on electrodynamics. He conducted experiments on electromagnetism, electrical fields, and on the construction of instruments to measure magnetic fields. His most famous experiment, following those of Wilhelm Röntgen, examined the predictions of James Clerk Maxwell. Named after them as the Röntgen-Eichenwald experiment, this demonstrated that the movement of static charges was no different from electric currents in that they produced an electromagnetic field.

References

  1. "Friedrich Wilhelm Georg Kohlrausch". American Academy of Arts & Sciences. 2023-02-09. Retrieved 2023-12-14.
  2. "Friedrich Kohlrausch". www.nasonline.org. Retrieved 2023-12-14.
  3. "APS Member History". search.amphilsoc.org. Retrieved 2023-12-14.