Christie G. Enke

Last updated

Christie G. Enke
STC photo cropped.jpg
Chris Enke
BornJuly 8, 1933 (1933-07-08) (age 90)
Minneapolis, MN
NationalityAmerican
Alma mater Principia College
University of Illinois
Known for Electrospray ionization
Mass Spectrometry
chemical instrumentation
Scientific career
Fields Chemist
Institutions Princeton University
Michigan State University
University of New Mexico
Doctoral advisor Herbert August Laitinen

Christie G. Enke is a United States academic chemist who made pioneering contributions to the field of analytical chemistry.

Contents

Life and career

Chris Enke was born in Minneapolis, Minnesota on July 8, 1933. His parents were Alvin Enke and Mae Nichols. He graduated from Central High School in Minneapolis in 1951. He received a BA degree from Principia College in 1955 and a PhD from the University of Illinois in 1959. His thesis, concerning the anodic formation of surface oxide films on platinum electrodes, was performed under the guidance of Herbert Laitinen. While at Illinois, he also worked with Howard Malmstadt to introduce a graduate lab and lecture course in the electronics of laboratory instrumentation. He is now Professor Emeriti of Chemistry at the University of New Mexico and Michigan State University. Prior to his move to the University of New Mexico in 1994, he was an instructor and assistant professor at Princeton (1959 –1966), then an associate professor and professor at Michigan State University.

External videos
Nuvola apps kaboodle.svg Chris Enke, on the Triple Quadrupole breakthrough discovery: "It's a really interesting story because ... one man's noise is another man's answer.", Chemical Heritage Foundation

Education

Research and teaching

Awards

Service

Related Research Articles

<span class="mw-page-title-main">Mass spectrometry</span> Analytical technique based on determining mass to charge ratio of ions

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

<span class="mw-page-title-main">Tandem mass spectrometry</span> Type of mass spectrometry

Tandem mass spectrometry, also known as MS/MS or MS2, is a technique in instrumental analysis where two or more stages of analysis using one or more mass analyzer are performed with an additional reaction step in between these analyses to increase their abilities to analyse chemical samples. A common use of tandem MS is the analysis of biomolecules, such as proteins and peptides.

<span class="mw-page-title-main">Quadrupole mass analyzer</span> Type of mass spectrometer

In mass spectrometry, the quadrupole mass analyzer is a type of mass analyzer originally conceived by Nobel laureate Wolfgang Paul and his student Helmut Steinwedel. As the name implies, it consists of four cylindrical rods, set parallel to each other. In a quadrupole mass spectrometer (QMS) the quadrupole is the mass analyzer – the component of the instrument responsible for selecting sample ions based on their mass-to-charge ratio (m/z). Ions are separated in a quadrupole based on the stability of their trajectories in the oscillating electric fields that are applied to the rods.

<span class="mw-page-title-main">Matrix-assisted laser desorption/ionization</span> Ionization technique

In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy-absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of biomolecules and various organic molecules, which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft ways of obtaining ions of large molecules in the gas phase, though MALDI typically produces far fewer multi-charged ions.

<span class="mw-page-title-main">Electron-capture dissociation</span>

Electron-capture dissociation (ECD) is a method of fragmenting gas-phase ions for structure elucidation of peptides and proteins in tandem mass spectrometry. It is one of the most widely used techniques for activation and dissociation of mass selected precursor ion in MS/MS. It involves the direct introduction of low-energy electrons to trapped gas-phase ions.

<span class="mw-page-title-main">Electron-transfer dissociation</span>

Electron-transfer dissociation (ETD) is a method of fragmenting multiply-charged gaseous macromolecules in a mass spectrometer between the stages of tandem mass spectrometry (MS/MS). Similar to electron-capture dissociation, ETD induces fragmentation of large, multiply-charged cations by transferring electrons to them. ETD is used extensively with polymers and biological molecules such as proteins and peptides for sequence analysis. Transferring an electron causes peptide backbone cleavage into c- and z-ions while leaving labile post translational modifications (PTM) intact. The technique only works well for higher charge state peptide or polymer ions (z>2). However, relative to collision-induced dissociation (CID), ETD is advantageous for the fragmentation of longer peptides or even entire proteins. This makes the technique important for top-down proteomics. The method was developed by Hunt and coworkers at the University of Virginia.

Robert Graham Cooks is the Henry Bohn Hass Distinguished Professor of Chemistry in the Aston Laboratories for Mass Spectrometry at Purdue University. He is an ISI Highly Cited Chemist, with over 1,000 publications and an H-index of 144.

<span class="mw-page-title-main">Ambient ionization</span>

Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation. Ions can be formed by extraction into charged electrospray droplets, thermally desorbed and ionized by chemical ionization, or laser desorbed or ablated and post-ionized before they enter the mass spectrometer.

<span class="mw-page-title-main">Triple quadrupole mass spectrometer</span>

A triple quadrupole mass spectrometer (TQMS), is a tandem mass spectrometer consisting of two quadrupole mass analyzers in series, with a (non-mass-resolving) radio frequency (RF)–only quadrupole between them to act as a cell for collision-induced dissociation. This configuration is often abbreviated QqQ, here Q1q2Q3.

<span class="mw-page-title-main">Collision-induced dissociation</span> Mass spectrometry technique to induce fragmentation of selected ions in the gas phase

Collision-induced dissociation (CID), also known as collisionally activated dissociation (CAD), is a mass spectrometry technique to induce fragmentation of selected ions in the gas phase. The selected ions are usually accelerated by applying an electrical potential to increase the ion kinetic energy and then allowed to collide with neutral molecules. In the collision, some of the kinetic energy is converted into internal energy which results in bond breakage and the fragmentation of the molecular ion into smaller fragments. These fragment ions can then be analyzed by tandem mass spectrometry.

<span class="mw-page-title-main">Michael Barber (chemist)</span> British chemist and mass spectrometrist

Michael (Mickey) Barber, FRS was a British chemist and mass spectrometrist, best known for his invention of fast atom bombardment ionisation.

<span class="mw-page-title-main">Atmospheric pressure photoionization</span> Soft ionization method

Atmospheric pressure photoionization (APPI) is a soft ionization method used in mass spectrometry (MS) usually coupled to liquid chromatography (LC). Molecules are ionized using a vacuum ultraviolet (VUV) light source operating at atmospheric pressure, either by direct absorption followed by electron ejection or through ionization of a dopant molecule that leads to chemical ionization of target molecules. The sample is usually a solvent spray that is vaporized by nebulization and heat. The benefit of APPI is that it ionizes molecules across a broad range of polarity and is particularly useful for ionization of low polarity molecules for which other popular ionization methods such as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are less suitable. It is also less prone to ion suppression and matrix effects compared to ESI and APCI and typically has a wide linear dynamic range. The application of APPI with LC/MS is commonly used for analysis of petroleum compounds, pesticides, steroids, and drug metabolites lacking polar functional groups and is being extensively deployed for ambient ionization particularly for explosives detection in security applications.

Jennifer S. Brodbelt is an American chemist known for her research using mass spectrometry to characterize organic compounds, especially biopolymers and proteins.

<span class="mw-page-title-main">Gary Glish</span> American analytical chemist

Gary Glish is an American analytical chemist at the University of North Carolina at Chapel Hill. He is a leading researcher in the fields of mass spectrometry, ion chemistry, and biomolecule analysis.

<span class="mw-page-title-main">Richard Yost</span> American scientist

Richard A Yost is an American scientist and a professor at the University of Florida. He is best known for his work inventing the triple quadrupole mass spectrometer. Yost received his BS degree in chemistry in 1974 from the University of Arizona, having performed undergraduate research in chromatography with Mike Burke and his PhD degree in Analytical Chemistry in 1979 from Michigan State University, having performed graduate research with Chris Enke.

<span class="mw-page-title-main">Laser diode thermal desorption</span>

Laser diode thermal desorption (LDTD) is an ionization technique that is coupled to mass spectrometry to analyze samples with atmospheric pressure chemical ionization (APCI). It uses a laser to thermally desorb analytes that are deposited on a stainless steel sheet sample holder, called LazWell. The coupling of LDTD and APCI is considered to be a soft-ionization technique. With LDTD-APCI, it is possible to analyze samples in forensics, pharmaceuticals, environment, food and clinical studies. LDTD is suitable for small molecules between 0 and 1200 Da and some peptides such as cyclosporine.

Hilkka Inkeri Kenttämaa is a researcher in organic and bioorganic mass spectrometry, and the Frank Brown Endowed Distinguished Professor of Chemistry at Purdue University. She is a pioneer in distonic radical cation research and laser-induced acoustic desorption.

Barbara Seliger Larsen is a mass spectrometrist, with a career in instrumentations and applications of mass spectrometry in industry, and served on the board of the American Society for Mass Spectrometry for several terms.

<span class="mw-page-title-main">Lidia Gall</span> Russian mass spectrometrist (1934–2023)

Lidia Nikolaevna Gall was a Russian mass spectrometrist, credited as one of the inventors for electrospray ionization source and high-performance mass analyzers.

References

  1. Daum, Peter H.; Enke, Christie G. (1969). "Electrochemical kinetics of the ferri-ferrocyanide couple on platinum". Analytical Chemistry. 41 (4): 653–656. doi:10.1021/ac60273a007. ISSN   0003-2700.
  2. Johnson, Donald Edwin; Enke, C. G. (1970). "Bipolar pulse technique for fast conductance measurements". Analytical Chemistry. 42 (3): 329–335. doi:10.1021/ac60285a015. ISSN   0003-2700.
  3. Malmstadt, Howard; Enke, Christie (1962). Electronics for Scientists. New York: W. A. Benjamin.
  4. Enke, Christie G. (2001). The art and science of chemical analysis. Wiley. OCLC   681424927.
  5. Yost, R.A.; Enke, C.G.; McGilvery, D.C.; Smith, D.; Morrison, J.D. (June 1979). "High efficiency collision-induced dissociation in an RF-only quadrupole". International Journal of Mass Spectrometry and Ion Physics. 30 (2): 127–136. Bibcode:1979IJMSI..30..127Y. doi:10.1016/0020-7381(79)80090-x. ISSN   0020-7381.
  6. Yost, R. A.; Enke, C. G. (1978). "Selected ion fragmentation with a tandem quadrupole mass spectrometer". Journal of the American Chemical Society. 100 (7): 2274–2275. doi:10.1021/ja00475a072. ISSN   0002-7863.
  7. Newcome, B. H.; Enke, C. G. (1984). "Modular twin bus microprocessor system for laboratory automation". Review of Scientific Instruments. 55 (12): 2017–2022. Bibcode:1984RScI...55.2017N. doi:10.1063/1.1137705. ISSN   0034-6748.
  8. Enke, C. G. (February 12, 1982). "Computers in Scientific Instrumentation". Science. 215 (4534): 785–791. doi:10.1126/science.215.4534.785. ISSN   0036-8075. PMID   17747841. S2CID   46561693.
  9. Stults, J. T.; Myerholtz, C. A.; Newcome, B. H.; Enke, C. G.; Holland, J. F. (1985). "Data acquisition and instrument control system for ion flight time measurements in mass spectrometry". Review of Scientific Instruments. 56 (12): 2267–2273. Bibcode:1985RScI...56.2267S. doi:10.1063/1.1138362. ISSN   0034-6748.
  10. Seeterlin, M. A.; Vlasak, P. R.; Beussman, D. J.; McLane, R. D.; Enke, C. G. (1993). "High Efficiency Photo-Induced Dissociation of Precursor Ions in a Tandem Time-of-Flight Mass Spectrometer". Journal of the American Society for Mass Spectrometry. 4 (9): 751–754. doi:10.1016/1044-0305(93)80055-4. ISSN   1044-0305. PMID   24226002. S2CID   1243156.
  11. Enke, Christie G. (1997). "A Predictive Model for Matrix and Analyte Effects in Electrospray Ionization of Singly-Charged Ionic Analytes". Analytical Chemistry. 69 (23): 4885–4893. doi:10.1021/ac970095w. ISSN   0003-2700. PMID   9406535.
  12. Enke, Christie G.; Dobson, Gareth S. (2007). "Achievement of Energy Focus for Distance-of-Flight Mass Spectrometry with Constant Momentum Acceleration and an Ion Mirror". Analytical Chemistry. 79 (22): 8650–8661. doi:10.1021/ac070638u. ISSN   0003-2700. PMID   17929898.
  13. Enke, Christie G.; Nagels, Luc J. (2011). "Undetected Components in Natural Mixtures: How Many? What Concentrations? Do They Account for Chemical Noise? What Is Needed to Detect Them?". Analytical Chemistry. 83 (7): 2539–2546. doi:10.1021/ac102818a. ISSN   0003-2700. PMID   21366323.
  14. "Distinguished Contribution Past Recipients". American Society for Mass Spectrometry . Retrieved January 6, 2011.