Glow-discharge optical emission spectroscopy

Last updated
GDOES at the University of Applied Sciences Ravensburg-Weingarten GDOS-2015.jpg
GDOES at the University of Applied Sciences Ravensburg-Weingarten
Upper left: Glow discharge source; Right: Rowland circle in a photo-spectrometer Rowland-Kreis-Prinzip.jpg
Upper left: Glow discharge source; Right: Rowland circle in a photo-spectrometer

Glow-discharge optical emission spectroscopy (GDOES) is a spectroscopic method for the quantitative analysis of metals and other non-metallic solids. The idea was published and patented in 1968 by Werner Grimm from Hanau, Germany. [1] [2]

Contents

Ordinary atomic spectroscopy can be used to determine the surface of a material, but not its layered structure. In contrast, GDOES gradually ablates the layers of the sample, revealing the deeper structure.

GDOES spectroscopy can be used for the quantitative and qualitative determination of elements and is therefore a method of analytical chemistry.

Process

The metallic samples are used as a cathode in a direct current plasma. From the surface, the sample is removed in layers by sputtering with argon ions. The removed atoms pass into the plasma by diffusion. Photons are emitted with excited waves and have characteristic wavelengths which are recorded by means of a downstream spectrometer and subsequently quantified.

When using a high-frequency alternating voltage for plasma generation and the corresponding construction of the glow discharge source, non-metallic samples can also be examined.

Various instruments are used as sensors. Photomultipliers can detect the slightest traces and also high concentrations of the sensor-specific element. By means of charge-coupled device, a complete element spectrum can be measured with the appropriate layer thickness.

Applications

Glow discharge spectroscopy is an established method for the characterization of steels and varnishes. Recent developments relate to the analysis of porous electrodes from lithium-ion batteries. [3] [4]

Further reading

Related Research Articles

<span class="mw-page-title-main">Analytical chemistry</span> Study of the separation, identification, and quantification of matter

Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration.

<span class="mw-page-title-main">Atomic absorption spectroscopy</span> Type of spectroanalytical ciao

Atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES) is a spectroanalytical procedure for the quantitative determination of chemical elements by free atoms in the gaseous state. Atomic absorption spectroscopy is based on absorption of light by free metallic ions.

<span class="mw-page-title-main">Spectroscopy</span> Study involving matter and electromagnetic radiation

Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO).

<span class="mw-page-title-main">Inductively coupled plasma mass spectrometry</span> Type of mass spectrometry that uses an inductively coupled plasma to ionize the sample

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is known and used for its ability to detect metals and several non-metals in liquid samples at very low concentrations. It can detect different isotopes of the same element, which makes it a versatile tool in isotopic labeling.

<span class="mw-page-title-main">Emission spectrum</span> Frequencies of light emitted by atoms or chemical compounds

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an electron making a transition from a high energy state to a lower energy state. The photon energy of the emitted photon is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.

Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a plasma, such as plasma components' density, distribution function over energy (temperature), their spatial profiles and dynamics, which enable to derive plasma parameters.

In physics, atomic spectroscopy is the study of the electromagnetic radiation absorbed and emitted by atoms. Since unique elements have unique emission spectra, atomic spectroscopy is applied for determination of elemental compositions. It can be divided by atomization source or by the type of spectroscopy used. In the latter case, the main division is between optical and mass spectrometry. Mass spectrometry generally gives significantly better analytical performance, but is also significantly more complex. This complexity translates into higher purchase costs, higher operational costs, more operator training, and a greater number of components that can potentially fail. Because optical spectroscopy is often less expensive and has performance adequate for many tasks, it is far more common. Atomic absorption spectrometers are one of the most commonly sold and used analytical devices.

Gold fingerprinting is a method of identifying an item made of gold based on the impurities or trace elements it contains.

<span class="mw-page-title-main">Inductively coupled plasma</span> Type of plasma source

An inductively coupled plasma (ICP) or transformer coupled plasma (TCP) is a type of plasma source in which the energy is supplied by electric currents which are produced by electromagnetic induction, that is, by time-varying magnetic fields.

<span class="mw-page-title-main">Glow discharge</span>

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

<span class="mw-page-title-main">Elemental analysis</span> Process of analytical chemistry

Elemental analysis is a process where a sample of some material is analyzed for its elemental and sometimes isotopic composition. Elemental analysis can be qualitative, and it can be quantitative. Elemental analysis falls within the ambit of analytical chemistry, the instruments involved in deciphering the chemical nature of our world.

<span class="mw-page-title-main">Laser-induced breakdown spectroscopy</span> Type of atomic emission spectroscopy

Laser-induced breakdown spectroscopy (LIBS) is a type of atomic emission spectroscopy which uses a highly energetic laser pulse as the excitation source. The laser is focused to form a plasma, which atomizes and excites samples. The formation of the plasma only begins when the focused laser achieves a certain threshold for optical breakdown, which generally depends on the environment and the target material.

<span class="mw-page-title-main">Inductively coupled plasma atomic emission spectroscopy</span> Analytic scientific technique

Inductively coupled plasma atomic emission spectroscopy (ICP-AES), also referred to as inductively coupled plasma optical emission spectroscopy (ICP-OES), is an analytical technique used for the detection of chemical elements. It is a type of emission spectroscopy that uses the inductively coupled plasma to produce excited atoms and ions that emit electromagnetic radiation at wavelengths characteristic of a particular element. The plasma is a high temperature source of ionised source gas. The plasma is sustained and maintained by inductive coupling from electrical coils at megahertz frequencies. The source temperature is in the range from 6000 to 10,000 K. The intensity of the emissions from various wavelengths of light are proportional to the concentrations of the elements within the sample.

<span class="mw-page-title-main">Electric spark</span> Abrupt electrical discharge through an ionised channel

An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael Faraday described this phenomenon as "the beautiful flash of light attending the discharge of common electricity".

In a chemical analysis, the internal standard method involves adding the same amount of a chemical substance to each sample and calibration solution. The internal standard responds proportionally to changes in the analyte and provides a similar, but not identical, measurement signal. It must also be absent from the sample matrix to ensure there is no other source of the internal standard present. Taking the ratio of analyte signal to internal standard signal and plotting it against the analyte concentrations in the calibration solutions will result in a calibration curve. The calibration curve can then be used to calculate the analyte concentration in an unknown sample.

<span class="mw-page-title-main">Spark ionization</span> Ionization method to produce gas phase ions from a solid sample

Spark ionization is a method used to produce gas phase ions from a solid sample. The prepared solid sample is vaporized and partially ionized by an intermittent discharge or spark. This technique is primarily used in the field of mass spectrometry. When incorporated with a mass spectrometer the complete instrument is referred to as a spark ionization mass spectrometer or as a spark source mass spectrometer (SSMS).

<span class="mw-page-title-main">Atomic emission spectroscopy</span> Analytical method using radiation to identify chemical elements in a sample

Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample. The wavelength of the atomic spectral line in the emission spectrum gives the identity of the element while the intensity of the emitted light is proportional to the number of atoms of the element. The sample may be excited by various methods.

<span class="mw-page-title-main">Spectroelectrochemistry</span>

Spectroelectrochemistry (SEC) is a set of multi-response analytical techniques in which complementary chemical information is obtained in a single experiment. Spectroelectrochemistry provides a whole vision of the phenomena that take place in the electrode process. The first spectroelectrochemical experiment was carried out by Theodore Kuwana, PhD, in 1964.

References

  1. Grimm, W. (1968). "Eine neue glimmentladungslampe für die optische emissionsspektralanalyse". Spectrochimica Acta Part B: Atomic Spectroscopy. 23 (7): 443–454. Bibcode:1968AcSpe..23..443G. doi:10.1016/0584-8547(68)80023-0. ISSN   0584-8547.
  2. United StatesPatent US3543077,Grimm Werner,"Glow discharge tube for spectral analysis",published November 24, 1970, assigned to Rsv Prazisionsmessgerate Gmbh
  3. Takahara, Hikari; Shikano, Masahiro; Kobayashi, Hironori (2013). "Quantification of lithium in LIB electrodes with glow discharge optical emission spectroscopy (GD-OES)". Journal of Power Sources. 244: 252–258. doi:10.1016/j.jpowsour.2013.01.109. ISSN   0378-7753.
  4. Ghanbari, N.; Waldmann, T.; Kasper, M.; Axmann, P.; Wohlfahrt-Mehrens, M. (2015). "Detection of Li Deposition by Glow Discharge Optical Emission Spectroscopy in Post-Mortem Analysis". ECS Electrochemistry Letters. 4 (9): A100–A102. doi:10.1149/2.0041509eel. ISSN   2162-8726.