Direct-current plasma

Last updated
Figure 1: Schematic of a three-electrode, argon DCP source. Note the inverted-'Y' shape of the plasma column. DCP schematic.jpg
Figure 1: Schematic of a three-electrode, argon DCP source. Note the inverted-'Y' shape of the plasma column.

Direct-current plasma (DCP) is a type of plasma source used for atomic emission spectroscopy that utilizes three electrodes to produce a plasma stream. [1] The most common three-electrode DCP apparatus consists of two graphite anode blocks and a tungsten cathode block arranged in an inverted-Y arrangement. An argon gas source is situated between the anode blocks and argon gas flows through the anode blocks. [1] [2] The plasma stream is produced by briefly contacting the cathode with the anodes. Temperatures at the arc core exceed 8000 K. [1] This three-electrode arrangement is illustrated in Figure 1.

Contents

Applications

Figure 2: A chemical vapor deposition chamber in which DCP (giving off the violet light) is being used to assist in the growth of carbon nanotubes. PICT0111.JPG
Figure 2: A chemical vapor deposition chamber in which DCP (giving off the violet light) is being used to assist in the growth of carbon nanotubes.

The applications of DCP are comparable to inductively coupled plasma (ICP). [1] Some applications include, but are not limited to:

Figure 2 shows DCP being used to grow carbon nanofibers.

Comparison to inductively coupled plasma (ICP)

DCP incurs several key disadvantages in comparison to ICP. In addition to the lower sensitivity, spectra generated by DCP generally present fewer spectral lines. [1] DCP samples are often incompletely volatilized due to the relatively short amount of time spent in the hottest region of the plasma. Furthermore, DCP requires more regular upkeep than ICP, because the graphite electrodes wear out after a few hours and must be exchanged [1]

However, DCP is not without a few advantages over ICP. The amount of argon needed for DCP is much less than that needed for ICP. Also, DCP can analyze samples that have a higher percentage of solid in solution than can be handled by ICP. [1]

Related Research Articles

Atomic absorption spectroscopy Type of spectroanalytical procedure

Atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES) is a spectroanalytical procedure for the quantitative determination of chemical elements using the absorption of optical radiation (light) by free atoms in the gaseous state. Atomic absorption spectroscopy is based on absorption of light by free metallic ions.

Inductively coupled plasma mass spectrometry Type of mass spectrometry that uses an inductively coupled plasma to ionize the sample

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is known and used for its ability to detect metals and several non-metals in liquid samples at very low concentrations. It can detect different isotopes of the same element, which makes it a versatile tool in isotopic labeling.

Inductively coupled plasma

An inductively coupled plasma (ICP) or transformer coupled plasma (TCP) is a type of plasma source in which the energy is supplied by electric currents which are produced by electromagnetic induction, that is, by time-varying magnetic fields.

Glow discharge

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

Plasma torch Device for generating a directed flow of plasma

A plasma torch is a device for generating a directed flow of plasma.

Laser ablation Process that removes material from an object by heating it with a laser

Laser ablation or photoablation is the process of removing material from a solid surface by irradiating it with a laser beam. At low laser flux, the material is heated by the absorbed laser energy and evaporates or sublimates. At high laser flux, the material is typically converted to a plasma. Usually, laser ablation refers to removing material with a pulsed laser, but it is possible to ablate material with a continuous wave laser beam if the laser intensity is high enough. While relatively long laser pulses can heat and thermally alter or damage the processed material, ultrashort laser pulses cause only minimal material damage during processing due to the ultrashort light-matter interaction and are therefore also suitable for micromaterial processing. Excimer lasers of deep ultra-violet light are mainly used in photoablation; the wavelength of laser used in photoablation is approximately 200 nm.

Duoplasmatron

The Duoplasmatron is an ion source in which a cathode filament emits electrons into a vacuum chamber. A gas such as argon is introduced in very small quantities into the chamber, where it becomes charged or ionized through interactions with the free electrons from the cathode, forming a plasma. The plasma is then accelerated through a series of at least two highly charged grids, and becomes an ion beam, moving at a fairly high speed from the aperture of the device.

Carbon nanofiber

Carbon nanofibers (CNFs), vapor grown carbon fibers (VGCFs), or vapor grown carbon nanofibers (VGCNFs) are cylindrical nanostructures with graphene layers arranged as stacked cones, cups or plates. Carbon nanofibers with graphene layers wrapped into perfect cylinders are called carbon nanotubes.

Inductively coupled plasma atomic emission spectroscopy

Inductively coupled plasma atomic emission spectroscopy (ICP-AES), also referred to as inductively coupled plasma optical emission spectrometry (ICP-OES), is an analytical technique used for the detection of chemical elements. It is a type of emission spectroscopy that uses the inductively coupled plasma to produce excited atoms and ions that emit electromagnetic radiation at wavelengths characteristic of a particular element. The plasma is a high temperature source of ionised source gas. The plasma is sustained and maintained by inductive coupling from cooled electrical coils at megahertz frequencies. The source temperature is in the range from 6000 to 10,000 K. The intensity of the emissions from various wavelengths of light are proportional to the concentrations of the elements within the sample.

Electric spark Abrupt electrical discharge through an ionised channel

An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael Faraday described this phenomenon as "the beautiful flash of light attending the discharge of common electricity".

Electrosynthesis in chemistry is the synthesis of chemical compounds in an electrochemical cell. Compared to ordinary redox reaction, electrosynthesis sometimes offers improved selectivity and yields. Electrosynthesis is actively studied as a science and also has industrial applications. Electrooxidation has potential for wastewater treatment as well.

Aluminium smelting Process of extracting aluminium from its oxide alumina

Aluminium smelting is the process of extracting aluminium from its oxide, alumina, generally by the Hall-Héroult process. Alumina is extracted from the ore bauxite by means of the Bayer process at an alumina refinery.

Lithium-ion capacitor Hybrid type of capacitor

A lithium-ion capacitor (LIC) is a hybrid type of capacitor classified as a type of supercapacitor. It is called a hybrid because the anode is the same as those used in lithium-ion batteries and the cathode is the same as those used in supercapacitors. Activated carbon is typically used as the cathode. The anode of the LIC consists of carbon material which is often pre-doped with lithium ions. This pre-doping process lowers the potential of the anode and allows a relatively high output voltage compared to other supercapacitors.

A microplasma is a plasma of small dimensions, ranging from tens to thousands of micrometers. Microplasmas can be generated at a variety of temperatures and pressures, existing as either thermal or non-thermal plasmas. Non-thermal microplasmas that can maintain their state at standard temperatures and pressures are readily available and accessible to scientists as they can be easily sustained and manipulated under standard conditions. Therefore, they can be employed for commercial, industrial, and medical applications, giving rise to the evolving field of microplasmas.

Atomic emission spectroscopy Analytical method using radiation to identify chemical elements in a sample

Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample. The wavelength of the atomic spectral line in the emission spectrum gives the identity of the element while the intensity of the emitted light is proportional to the number of atoms of the element. The sample may be excited by various methods.

Nanoball batteries are an experimental type of battery with either the cathode or anode made of nanosized balls that can be composed of various materials such as carbon and lithium iron phosphate. Batteries which use nanotechnology are more capable than regular batteries because of the vastly improved surface area which allows for greater electrical performance, such as fast charging and discharging.

A potassium-ion battery or K-ion battery is a type of battery and analogue to lithium-ion batteries, using potassium ions for charge transfer instead of lithium ions. It was invented by the Iranian/American chemist Ali Eftekhari in 2004.

Synthesis of carbon nanotubes Class of manufacturing

Techniques have been developed to produce carbon nanotubes in sizable quantities, including arc discharge, laser ablation, high-pressure carbon monoxide disproportionation, and chemical vapor deposition (CVD). Most of these processes take place in a vacuum or with process gases. CVD growth of CNTs can occur in vacuum or at atmospheric pressure. Large quantities of nanotubes can be synthesized by these methods; advances in catalysis and continuous growth are making CNTs more commercially viable.

Glow-discharge optical emission spectroscopy

Glow-discharge optical emission spectroscopy (GDOES) is a spectroscopic method for the quantitative analysis of metals and other non-metallic solids. The idea was published and patented in 1968 by Werner Grimm from Hanau, Germany.

Electrochemical stripping analysis

Electrochemical stripping analysis is a set of analytical chemistry methods based on voltammetry or potentiometry that are used for quantitative determination of ions in solution. Stripping voltammetry have been employed for analysis of organic molecules as well as metal ions. Carbon paste, glassy carbon paste, and glassy carbon electrodes when modified are termed as chemically modified electrodes and have been employed for the analysis of organic and inorganic compounds.

References

  1. 1 2 3 4 5 6 7 Skoog, D. A.; Holler, F. J.; Crouch, S.R. Principles of Instrumental Analysis, 6th ed., Brooks Cole, 2007; pp. 258-259. ISBN   9780495012016.
  2. "NMSU: DC Plasma". Archived from the original on 2012-01-11. Retrieved 2012-04-24.
  3. Barth, Rolf F.; Adams, Dianne M.; Soloway, Albert H.; Mechetner, Eugene B.; Alam, Fazlul.; Anisuzzaman, Abul K. M. (1991). "Determination of boron in tissues and cells using direct-current plasma atomic emission spectroscopy". Analytical Chemistry. 63 (9): 890–893. doi:10.1021/ac00009a010. PMID   1858981.
  4. Combs, D.K.; Satter, L.D. (1992). "Determination of Markers in Digesta and Feces by Direct Current Plasma Emission Spectroscopy". Journal of Dairy Science. 75 (8): 2176–2183. doi: 10.3168/jds.S0022-0302(92)77977-6 . PMID   1401369.
  5. Melechko, A. V.; Merkulov, V. I.; McKnight, T. E.; Guillorn, M. A.; Klein, K. L.; Lowndes, D. H.; Simpson, M. L. (15 February 2005). "Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly". Journal of Applied Physics. 97 (4): 041301–041301–39. Bibcode:2005JAP....97d1301M. doi:10.1063/1.1857591.