N-slit interferometric equation

Last updated

Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. [1] Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. [2] Feynman's approach was extended to N-slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. [3] [4] The N-slit interferometer was first applied in the generation and measurement of complex interference patterns. [3] [4]

Contents

In this article the generalized N-slit interferometric equation, derived via Dirac's notation, is described. Although originally derived to reproduce and predict N-slit interferograms, [3] [4] this equation also has applications to other areas of optics.

Probability amplitudes and the N-slit interferometric equation

Top view schematics of the N-slit interferometer indicating the position of the planes s, j, and x. The N-slit array, or grating, is positioned at j. The intra interferometric distance can be several-hundred meters long. TBE is a telescopic beam expander, MPBE is a multiple-prism beam expander. FJ DUARTE-N SLIT INTERFEROMETER.jpg
Top view schematics of the N-slit interferometer indicating the position of the planes s, j, and x. The N-slit array, or grating, is positioned at j. The intra interferometric distance can be several-hundred meters long. TBE is a telescopic beam expander, MPBE is a multiple-prism beam expander.

In this approach the probability amplitude for the propagation of a photon from a source s to an interference plane x, via an array of slits j, is given using Dirac's bra–ket notation as [3]

This equation represents the probability amplitude of a photon propagating from s to x via an array of j slits. Using a wavefunction representation for probability amplitudes, [1] and defining the probability amplitudes as [3] [4] [5]

where θj and Φj are the incidence and diffraction phase angles, respectively. Thus, the overall probability amplitude can be rewritten as

where

and

after some algebra, the corresponding probability becomes [3] [4] [5]

where N is the total number of slits in the array, or transmission grating, and the term in parentheses represents the phase that is directly related to the exact path differences derived from the geometry of the N-slit array (j), the intra interferometric distance, and the interferometric plane x. [5] In its simplest version, the phase term can be related to the geometry using

where k is the wavenumber, and Lm and Lm − 1 represent the exact path differences. Here the DiracDuarte (DD) interferometric equation is a probability distribution that is related to the intensity distribution measured experimentally. [6] The calculations are performed numerically. [5]

The DD interferometric equation applies to the propagation of a single photon, or the propagation of an ensemble of indistinguishable photons, and enables the accurate prediction of measured N-slit interferometric patterns continuously from the near to the far field. [5] [6] Interferograms generated with this equation have been shown to compare well with measured interferograms for both even (N = 2, 4, 6...) and odd (N = 3, 5, 7...) values of N from 2 to 1600. [5] [7]

Applications

At a practical level, the N-slit interferometric equation was introduced for imaging applications [5] and is routinely applied to predict N-slit laser interferograms, both in the near and far field. Thus, it has become a valuable tool in the alignment of large, and very large, N-slit laser interferometers [8] [9] used in the study of clear air turbulence and the propagation of interferometric characters for secure laser communications in space. Other analytical applications are described below.

Interferogram for N = 3 slits with diffraction pattern superimposed on the right outer wing. FJDUARTE-LASERS-JOPT13-035710(2011).jpg
Interferogram for N = 3 slits with diffraction pattern superimposed on the right outer wing.

Generalized diffraction and refraction

The N-slit interferometric equation has been applied to describe classical phenomena such as interference, diffraction, refraction (Snell's law), and reflection, in a rational and unified approach, using quantum mechanics principles. [7] [10] In particular, this interferometric approach has been used to derive generalized refraction equations for both positive and negative refraction, [11] thus providing a clear link between diffraction theory and generalized refraction. [11]

From the phase term, of the interferometric equation, the expression

can be obtained, where M = 0, 2, 4....

For n1 = n2, this equation can be written as [7] [10]

which is the generalized diffraction grating equation. Here, θm is the angle of incidence, φm is the angle of diffraction, λ is the wavelength, and m = 0, 1, 2... is the order of diffraction.

Under certain conditions, dmλ, which can be readily obtained experimentally, the phase term becomes [7] [10]

which is the generalized refraction equation, [11] where θm is the angle of incidence, and φm now becomes the angle of refraction.

Cavity linewidth equation

Furthermore, the N-slit interferometric equation has been applied to derive the cavity linewidth equation applicable to dispersive oscillators, such as the multiple-prism grating laser oscillators: [12]

In this equation, Δθ is the beam divergence and the overall intracavity angular dispersion is the quantity in parentheses.

Fourier transform imaging

Researchers working on Fourier-transform ghost imaging consider the N-slit interferometric equation [3] [5] [10] as an avenue to investigate the quantum nature of ghost imaging. [13] Also, the N-slit interferometric approach is one of several approaches applied to describe basic optical phenomena in a cohesive and unified manner. [14]

Note: given the various terminologies in use, for N-slit interferometry, it should be made explicit that the N-slit interferometric equation applies to two-slit interference, three-slit interference, four-slit interference, etc.

Quantum entanglement

The Dirac principles and probabilistic methodology used to derive the N-slit interferometric equation have also been used to derive the polarization quantum entanglement probability amplitude [15]

and corresponding probability amplitudes depicting the propagation of multiple pairs of quanta. [16]

Comparison with classical methods

A comparison of the Dirac approach with classical methods, in the performance of interferometric calculations, has been done by Travis S. Taylor et al. [17] These authors concluded that the interferometric equation, derived via the Dirac formalism, was advantageous in the very near field.

Some differences between the DD interferometric equation and classical formalisms can be summarized as follows:

So far there has been no published comparison with more general classical approaches based on the Huygens–Fresnel principle or Kirchhoff's diffraction formula.

See also

Related Research Articles

In quantum mechanics, bra–ket notation, or Dirac notation, is used ubiquitously to denote quantum states. The notation uses angle brackets, and , and a vertical bar , to construct "bras" and "kets".

<span class="mw-page-title-main">Diffraction</span> Phenomenon of the motion of waves

Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

<span class="mw-page-title-main">Wave interference</span> Phenomenon resulting from the superposition of two waves

In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive interference result from the interaction of waves that are correlated or coherent with each other, either because they come from the same source or because they have the same or nearly the same frequency. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves.

<span class="mw-page-title-main">Quantum mechanics</span> Theory of physics describing nature at an atomic scale

Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

In quantum mechanics, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a particle, such as position, x, and momentum, p, can be predicted from initial conditions.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations: first when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and second when one wants to describe a physical system which is entangled with another, as its state can not be described by a pure state.

<span class="mw-page-title-main">Quantum superposition</span> Principle of quantum mechanics

Quantum superposition is a fundamental principle of quantum mechanics. It states that, much like waves in classical physics, any two quantum states can be added together ("superposed") and the result will be another valid quantum state; and conversely, that every quantum state can be represented as a sum of two or more other distinct states. Mathematically, it refers to a property of solutions to the Schrödinger equation; since the Schrödinger equation is linear, any linear combination of solutions will also be a solution(s) .

<span class="mw-page-title-main">Wave function</span> Mathematical description of the quantum state of a system

A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements made on the system can be derived from it. The most common symbols for a wave function are the Greek letters ψ and Ψ.

<span class="mw-page-title-main">Probability amplitude</span> Complex number whose squared absolute value is a probability

In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The modulus squared of this quantity represents a probability density.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

<span class="mw-page-title-main">Diffraction from slits</span>

Diffraction processes affecting waves are amenable to quantitative description and analysis. Such treatments are applied to a wave passing through one or more slits whose width is specified as a proportion of the wavelength. Numerical approximations may be used, including the Fresnel and Fraunhofer approximations.

The Kapitza–Dirac effect is a quantum mechanical effect consisting of the diffraction of matter by a standing wave of light. The effect was first predicted as the diffraction of electrons from a standing wave of light by Paul Dirac and Pyotr Kapitsa in 1933. The effect relies on the wave–particle duality of matter as stated by the de Broglie hypothesis in 1924.

<span class="mw-page-title-main">F. J. Duarte</span>

Francisco Javier "Frank" Duarte is a laser physicist and author/editor of several books on tunable lasers.

<span class="mw-page-title-main">Multiple-prism dispersion theory</span> Theory in optics

The first description of multiple-prism arrays, and multiple-prism dispersion, was given by Newton in his book Opticks. Prism pair expanders were introduced by Brewster in 1813. A modern mathematical description of the single-prism dispersion was given by Born and Wolf in 1959. The generalized multiple-prism dispersion theory was introduced by Duarte and Piper in 1982.

In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior. A mixture of quantum states is again a quantum state. Quantum states that cannot be written as a mixture of other states are called pure quantum states, while all other states are called mixed quantum states. A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers, while mixed states are represented by density matrices, which are positive semidefinite operators that act on Hilbert spaces.

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

The Koopman–von Neumann mechanics is a description of classical mechanics in terms of Hilbert space, introduced by Bernard Koopman and John von Neumann in 1931 and 1932, respectively.

References

  1. 1 2 Dirac, P. A. M. (1978). The Principles of Quantum Mechanics (4th ed.). London: Oxford University Press. ISBN   978-0-19-851208-0.[ page needed ]
  2. Feynman, R. P.; Leighton, R. B.; Sands, M. (1965). The Feynman Lectures on Physics. Vol. III. Reading: Addison Wesley.[ page needed ]
  3. 1 2 3 4 5 6 7 Duarte, F. J.; Paine, D. J. (1989). Sze, R. C.; Duarte, F. J. (eds.). "Quantum mechanical description of N-slit interference phenomena". Lasers '88; Proceedings of the International Conference. McLean, VA: STS: 42–47. Bibcode:1989lase.conf...42D.
  4. 1 2 3 4 5 Duarte, F. J. (1991). "Chapter 2. Dispersive dye lasers". In Duarte, F. J. (ed.). High Power Dye Lasers. Berlin: Springer-Verlag. ISBN   978-3-540-54066-3.
  5. 1 2 3 4 5 6 7 8 9 10 Duarte, F. J. (1993). "On a generalized interference equation and interferometric measurements". Opt. Commun. 103 (1–2): 8–14. Bibcode:1993OptCo.103....8D. doi:10.1016/0030-4018(93)90634-H.
  6. 1 2 Duarte, F. J. (2004). "Comment on 'Reflection, refraction, and multislit interference'". Eur. J. Phys. 25 (5): L57–L58. Bibcode:2004EJPh...25L..57D. doi:10.1088/0143-0807/25/5/L04. S2CID   250829486.
  7. 1 2 3 4 Duarte, F. J. (2015). Tunable Laser Optics (2nd ed.). New York, NY: CRC. ISBN   978-1-4822-4529-5.[ page needed ]
  8. Duarte, F. J.; Taylor, T. S.; Clark, A. B.; Davenport, W. E. (2010). "The N-slit interferometer: an extended configuration". J. Opt. 12 (1): 015705. Bibcode:2010JOpt...12a5705D. doi:10.1088/2040-8978/12/1/015705. S2CID   121521124.
  9. 1 2 Duarte, F. J.; Taylor, T. S.; Black, A. M.; Davenport, W. E.; Varmette, P. G. (2011). "N-slit interferometer for secure free-space optical communications: 527 m intra interferometric path length". J. Opt. 13 (3): 035710. Bibcode:2011JOpt...13c5710D. doi:10.1088/2040-8978/13/3/035710. S2CID   6086533.
  10. 1 2 3 4 Duarte, F. J. (1997). "Interference, diffraction, and refraction, via Dirac's notation". Am. J. Phys. 65 (7): 637–640. Bibcode:1997AmJPh..65..637D. doi:10.1119/1.18613.
  11. 1 2 3 Duarte, F. J. (2006). "Multiple-prism dispersion equations for positive and negative refraction". Appl. Phys. B. 82 (1): 35–38. Bibcode:2006ApPhB..82...35D. doi:10.1007/s00340-005-1996-x. S2CID   120462686.
  12. Duarte, F. J. (1992). "Cavity dispersion equation: a note on its origin". Appl. Opt. 31 (33): 6979–6982. Bibcode:1992ApOpt..31.6979D. doi:10.1364/AO.31.006979. PMID   20802556.
  13. Liu, H.; Shen, X.; Zhu, D.-M.; Han, S. (2007). "Fourier-transform ghost imaging with pure far-field correlated thermal light". Phys. Rev. A. 76 (5): 053808. Bibcode:2007PhRvA..76e3808L. doi:10.1103/PhysRevA.76.053808.
  14. Kurusingal, J. (2007). "Law of normal scattering – a comprehensive law for wave propagation at an interface". J. Opt. Soc. Am. A. 24 (1): 98–108. Bibcode:2007JOSAA..24...98K. doi:10.1364/JOSAA.24.000098. PMID   17164848.
  15. Duarte, F. J. (2014). Quantum Optics for Engineers. New York: CRC. ISBN   978-1-4398-8853-7. OCLC   871400712.
  16. Duarte, F. J. (2016). "Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement". Appl. Phys. Rev. 3 (4): 041301. Bibcode:2016ApPRv...3d1301D. doi:10.1063/1.4966139.
  17. Taylor, T. S.; et al. (1996). "Comparison of Fourier and Dirac calculations for classical optics". Proceedings of the International Conference on Lasers '95. McLean, VA: STS. pp. 487–492.
  18. Fowles, G. R. (1968). Introduction to Modern Optics. New York, NY: Holt, Rinehart and Winston.[ page needed ]