This article may be too technical for most readers to understand.(July 2020) |
In optics, negative refraction is the electromagnetic phenomenon where light rays become refracted at an interface that is opposite to their more commonly observed positive refractive properties. Negative refraction can be obtained by using a metamaterial which has been designed to achieve a negative value for electric permittivity (ε) and magnetic permeability (μ); in such cases the material can be assigned a negative refractive index. Such materials are sometimes called "double negative" materials. [1]
Negative refraction occurs at interfaces between materials at which one has an ordinary positive phase velocity (i.e., a positive refractive index), and the other has the more exotic negative phase velocity (a negative refractive index).
Negative phase velocity (NPV) is a property of light propagation in a medium. There are different definitions of NPV; the most common is Victor Veselago's original proposal of opposition of the wave vector and (Abraham) the Poynting vector. Other definitions include the opposition of wave vector to group velocity, and energy to velocity. [2] "Phase velocity" is used conventionally, as phase velocity has the same sign as the wave vector.
A typical criterion used to determine Veselago's NPV is that the dot product of the Poynting vector and wave vector is negative (i.e., that ), but this definition is not covariant. While this restriction is not practically significant, the criterion has been generalized into a covariant form. [3] Veselago NPV media are also called "left-handed (meta)materials", as the components of plane waves passing through (electric field, magnetic field, and wave vector) follow the left-hand rule instead of the right-hand rule. The terms "left-handed" and "right-handed" are generally avoided as they are also used to refer to chiral media.
One can choose to avoid directly considering the Poynting vector and wave vector of a propagating light field, and instead directly consider the response of the materials. Assuming the material is achiral, one can consider what values of permittivity (ε) and permeability (μ) result in negative phase velocity (NPV). Since both ε and μ are generally complex, their imaginary parts do not have to be negative for a passive (i.e. lossy) material to display negative refraction. In these materials, the criterion for negative phase velocity is derived by Depine and Lakhtakia to be
where are the real valued parts of ε and μ, respectively. For active materials, the criterion is different. [4] [5]
NPV occurrence does not necessarily imply negative refraction (negative refractive index). [6] [7] Typically, the refractive index is determined using
where by convention the positive square root is chosen for . However, in NPV materials, the negative square root is chosen to mimic the fact that the wave vector and phase velocity are also reversed. The refractive index is a derived quantity that describes how the wavevector is related to the optical frequency and propagation direction of the light; thus, the sign of must be chosen to match the physical situation.
The refractive index also depends on the chirality parameter , resulting in distinct values for left and right circularly polarized waves, given by
A negative refractive index occurs for one polarization if > ; in this case, and/or do not need to be negative. A negative refractive index due to chirality was predicted by Pendry and Tretyakov et al., [8] [9] and first observed simultaneously and independently by Plum et al. and Zhang et al. in 2009. [10] [11]
The consequence of negative refraction is light rays are refracted on the same side of the normal on entering the material, as indicated in the diagram, and by a general form of Snell's law.
The Fresnel equations describe the reflection and transmission of light when incident on an interface between different optical media. They were deduced by French engineer and physicist Augustin-Jean Fresnel who was the first to understand that light is a transverse wave, when no one realized that the waves were electric and magnetic fields. For the first time, polarization could be understood quantitatively, as Fresnel's equations correctly predicted the differing behaviour of waves of the s and p polarizations incident upon a material interface.
In optics, the refractive index of an optical medium is the ratio of the apparent speed of light in the medium to the speed in air or vacuum. The refractive index determines how much the path of light is bent, or refracted, when entering a material. This is described by Snell's law of refraction, n1 sin θ1 = n2 sin θ2, where θ1 and θ2 are the angle of incidence and angle of refraction, respectively, of a ray crossing the interface between two media with refractive indices n1 and n2. The refractive indices also determine the amount of light that is reflected when reaching the interface, as well as the critical angle for total internal reflection, their intensity and Brewster's angle.
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity. Optical activity occurs only in chiral materials, those lacking microscopic mirror symmetry. Unlike other sources of birefringence which alter a beam's state of polarization, optical activity can be observed in fluids. This can include gases or solutions of chiral molecules such as sugars, molecules with helical secondary structure such as some proteins, and also chiral liquid crystals. It can also be observed in chiral solids such as certain crystals with a rotation between adjacent crystal planes or metamaterials.
In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. In other words, it is the length of the conductor measured in wavelengths. It can alternately be expressed as an angle, in radians or degrees, equal to the phase shift the alternating current experiences traveling through the conductor.
A magneto-optic effect is any one of a number of phenomena in which an electromagnetic wave propagates through a medium that has been altered by the presence of a quasistatic magnetic field. In such a medium, which is also called gyrotropic or gyromagnetic, left- and right-rotating elliptical polarizations can propagate at different speeds, leading to a number of important phenomena. When light is transmitted through a layer of magneto-optic material, the result is called the Faraday effect: the plane of polarization can be rotated, forming a Faraday rotator. The results of reflection from a magneto-optic material are known as the magneto-optic Kerr effect.
A metamaterial is a type of material engineered to have a property, typically rarely observed in naturally occurring materials, that is derived not from the properties of the base materials but from their newly designed structures. Metamaterials are usually fashioned from multiple materials, such as metals and plastics, and are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence. Their precise shape, geometry, size, orientation, and arrangement give them their "smart" properties of manipulating electromagnetic, acoustic, or even seismic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials.
The velocity factor (VF), also called wave propagation speed or velocity of propagation, of a transmission medium is the ratio of the speed at which a wavefront passes through the medium, to the speed of light in vacuum. For optical signals, the velocity factor is the reciprocal of the refractive index.
Victor Georgievich Veselago was a Soviet Russian physicist, doctor of physical and mathematical sciences, and a university professor. In 1967, he was the first to publish a theoretical analysis of materials with negative permittivity, ε, and permeability, μ.
In crystal optics, the index ellipsoid is a geometric construction which concisely represents the refractive indices and associated polarizations of light, as functions of the orientation of the wavefront, in a doubly-refractive crystal. When this ellipsoid is cut through its center by a plane parallel to the wavefront, the resulting intersection is an ellipse whose major and minor semiaxes have lengths equal to the two refractive indices for that orientation of the wavefront, and have the directions of the respective polarizations as expressed by the electric displacement vector D. The principal semiaxes of the index ellipsoid are called the principal refractive indices.
In physics, engineering and materials science, bi-isotropic materials have the special optical property that they can rotate the polarization of light in either refraction or transmission. This does not mean all materials with twist effect fall in the bi-isotropic class. The twist effect of the class of bi-isotropic materials is caused by the chirality and non-reciprocity of the structure of the media, in which the electric and magnetic field of an electromagnetic wave interact in an unusual way.
Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range.
Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.
An acoustic metamaterial, sonic crystal, or phononic crystal is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids. Sound wave control is accomplished through manipulating parameters such as the bulk modulus β, density ρ, and chirality. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic resonator.
A photonic metamaterial (PM), also known as an optical metamaterial, is a type of electromagnetic metamaterial, that interacts with light, covering terahertz (THz), infrared (IR) or visible wavelengths. The materials employ a periodic, cellular structure.
A nonlinear metamaterial is an artificially constructed material that can exhibit properties not yet found in nature. Its response to electromagnetic radiation can be characterized by its permittivity and material permeability. The product of the permittivity and permeability results in the refractive index. Unlike natural materials, nonlinear metamaterials can produce a negative refractive index. These can also produce a more pronounced nonlinear response than naturally occurring materials.
The term chiral describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself. In chemistry, such a molecule is called an enantiomer or is said to exhibit chirality or enantiomerism. The term "chiral" comes from the Greek word for the human hand, which itself exhibits such non-superimposeability of the left hand precisely over the right. Due to the opposition of the fingers and thumbs, no matter how the two hands are oriented, it is impossible for both hands to exactly coincide. Helices, chiral characteristics (properties), chiral media, order, and symmetry all relate to the concept of left- and right-handedness.
The history of metamaterials begins with artificial dielectrics in microwave engineering as it developed just after World War II. Yet, there are seminal explorations of artificial materials for manipulating electromagnetic waves at the end of the 19th century. Hence, the history of metamaterials is essentially a history of developing certain types of manufactured materials, which interact at radio frequency, microwave, and later optical frequencies.
Dyakonov surface waves (DSWs) are surface electromagnetic waves that travel along the interface in between an isotropic and an uniaxial-birefringent medium. They were theoretically predicted in 1988 by the Russian physicist Mikhail Dyakonov. Unlike other types of acoustic and electromagnetic surface waves, the DSW's existence is due to the difference in symmetry of materials forming the interface. He considered the interface between an isotropic transmitting medium and an anisotropic uniaxial crystal, and showed that under certain conditions waves localized at the interface should exist. Later, similar waves were predicted to exist at the interface between two identical uniaxial crystals with different orientations. The previously known electromagnetic surface waves, surface plasmons and surface plasmon polaritons, exist under the condition that the permittivity of one of the materials forming the interface is negative, while the other one is positive. In contrast, the DSW can propagate when both materials are transparent; hence they are virtually lossless, which is their most fascinating property.
In the physics of continuous media, spatial dispersion is usually described as a phenomenon where material parameters such as permittivity or conductivity have dependence on wavevector. Normally such a dependence is assumed to be absent for simplicity, however spatial dispersion exists to varying degrees in all materials.
Sergei Anatolyevich Tretyakov is a Russian-Finnish scientist, focused in electromagnetic field theory, complex media electromagnetics and microwave engineering. He is currently a professor at Department of Electronics and Nanoengineering, Aalto University, Finland. His main research area in recent years is metamaterials and metasurfaces from fundamentals to applications. He was the president of the European Virtual Institute for Artificial Electromagnetic Materials and Metamaterials and general chair of the Metamaterials Congresses from 2007 to 2013. He is a fellow/member of many scientific associations such as IEEE, URSI, the Electromagnetics Academy, and OSA. He is also an Honorary Doctor of Francisk Skorina Gomel State University.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)