Dove prism

Last updated
A Dove prism. DovePrism.png
A Dove prism.
The path of a beam through a Dove prism. Dove Prism.svg
The path of a beam through a Dove prism.

A Dove prism is a type of reflective prism which is used to invert an image. Dove prisms are shaped from a truncated right-angle prism. The Dove prism is named for its inventor, Heinrich Wilhelm Dove. Although the shape of this prism is similar to the shape described by a Dovetail joint, the etymology of the two is unrelated.

Contents

A beam of light travelling parallel to the longitudinal axis, entering one of the sloped faces of the prism undergoes total internal reflection from the inside of the longest (bottom) face and emerges from the opposite sloped face. Images passing through the prism are flipped (mirrored), and because only one reflection takes place, the image is also inverted but not laterally transposed.

Refraction at the entrance and exit surfaces results in substantial image astigmatism when used in convergent light. Thus the Dove prism is used almost exclusively for images appearing at infinity. [1]

If the flat hypotenuse surface of a Dove prism is cut into a roof shape, the result is an Amici roof prism.

Rotation

A reflection in one axis of a plane is always equivalent to a reflection and rotation in two other axes (with the angle between the source and image being twice the angle between the source and reflection axis of the prism). Thus, Dove prisms can be used to create beam rotators, which have applications in fields such as interferometry, astronomy, and pattern recognition.

Lesso and Padgett (1999) and Moreno et al. (2003, 2004) found that there is a change in the state of polarization of a beam of light on passing through a rotated dove prism. Polarization rotation in the infrared has been known for much longer. (Johnston 1977) The polarization-transforming properties of dove prisms are of particular interest because they can influence the signal measurement of the scientific instrument.

See also

Related Research Articles

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Polarization (waves)</span> Property of waves that can oscillate with more than one orientation

Polarization is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves in solids.

<span class="mw-page-title-main">Prism (optics)</span> Transparent optical element with flat, polished surfaces that refract light

An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Porro prism</span> Type of reflection prism

In optics, a Porro prism, named for its inventor Ignazio Porro, is a type of reflection prism used in optical instruments to alter the orientation of an image.

<span class="mw-page-title-main">Faraday rotator</span>

A Faraday rotator is a polarization rotator based on the Faraday effect, a magneto-optic effect involving transmission of light through a material when a longitudinal static magnetic field is present. The state of polarization is rotated as the wave traverses the device, which is explained by a slight difference in the phase velocity between the left and right circular polarizations. Thus it is an example of circular birefringence, as is optical activity, but involves a material only having this property in the presence of a magnetic field.

<span class="mw-page-title-main">Optical coating</span> Material which alters light reflection or transmission on optics

An optical coating is one or more thin layers of material deposited on an optical component such as a lens, prism or mirror, which alters the way in which the optic reflects and transmits light. These coatings have become a key technology in the field of optics. One type of optical coating is an anti-reflective coating, which reduces unwanted reflections from surfaces, and is commonly used on spectacle and camera lenses. Another type is the high-reflector coating, which can be used to produce mirrors that reflect greater than 99.99% of the light that falls on them. More complex optical coatings exhibit high reflection over some range of wavelengths, and anti-reflection over another range, allowing the production of dichroic thin-film filters.

<span class="mw-page-title-main">Polarimetry</span> Measurement and interpretation of the polarization of transverse waves

Polarimetry is the measurement and interpretation of the polarization of transverse waves, most notably electromagnetic waves, such as radio or light waves. Typically polarimetry is done on electromagnetic waves that have traveled through or have been reflected, refracted or diffracted by some material in order to characterize that object.

<span class="mw-page-title-main">Pellin–Broca prism</span> Dispersive prism

A Pellin–Broca prism is a type of constant-deviation dispersive prism similar to an Abbe prism.

<span class="mw-page-title-main">Porro–Abbe prism</span>

A Porro–Abbe prism, named for Ignazio Porro and Ernst Abbe, is a type of reflection prism used in some optical instruments to alter the orientation of an image. It is a variant of the more common double Porro prism configuration.

<span class="mw-page-title-main">Abbe–Koenig prism</span>

An Abbe–Koenig prism is a type of reflecting prism, used to invert an image. They are commonly used in binoculars and some telescopes for this purpose. The prism is named after Ernst Abbe and Albert Koenig.

<span class="mw-page-title-main">Amici roof prism</span> Non-dispersive prism in astronomy

An Amici roof prism, named for its inventor, the Italian astronomer Giovanni Battista Amici, is a type of reflecting prism used to deviate a beam of light by 90° while simultaneously inverting the image. It is commonly used in the eyepieces of telescopes as an image erecting system. It is sometimes called an Amici prism or right angle roof prism. The non-dispersive Amici roof prism should not be confused with the dispersive Amici prism.

<span class="mw-page-title-main">Polarizer</span> Optical filter device

A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well-defined polarization, that is polarized light. The common types of polarizers are linear polarizers and circular polarizers. Polarizers are used in many optical techniques and instruments, and polarizing filters find applications in photography and LCD technology. Polarizers can also be made for other types of electromagnetic waves besides visible light, such as radio waves, microwaves, and X-rays.

<span class="mw-page-title-main">Roof prism</span>

A roof prism, also called a Dachkanten prism or Dach prism, is a reflective prism containing a section where two faces meet at a 90° angle, resembling the roof of a building and thus the name. Reflection from the two 90° faces returns an image that is flipped laterally across the axis where the faces meet.

<span class="mw-page-title-main">Schmidt–Pechan prism</span>

A Schmidt–Pechan prism is a type of optical prism used to rotate an image by 180°. These prisms are commonly used in binoculars as an image erecting system. The Schmidt–Pechan prism makes use of a roof prism section. Binoculars designs using Schmidt–Pechan prisms can be constructed more compactly than ones using Porro or Uppendahl roof and Abbe–Koenig roof prisms.

<span class="mw-page-title-main">Fresnel rhomb</span> Optical prism

A Fresnel rhomb is an optical prism that introduces a 90° phase difference between two perpendicular components of polarization, by means of two total internal reflections. If the incident beam is linearly polarized at 45° to the plane of incidence and reflection, the emerging beam is circularly polarized, and vice versa. If the incident beam is linearly polarized at some other inclination, the emerging beam is elliptically polarized with one principal axis in the plane of reflection, and vice versa.

A delta prism is an optical element providing a compact folded form of the Dove prism. When used in the normal orientation, the prism inverts the image ; rotating the orientation results in image rotation to other arbitrary angles.

<span class="mw-page-title-main">Polarization rotator</span> Optical device

A polarization rotator is an optical device that rotates the polarization axis of a linearly polarized light beam by an angle of choice. Such devices can be based on the Faraday effect, on birefringence, or on total internal reflection. Rotators of linearly polarized light have found widespread applications in modern optics since laser beams tend to be linearly polarized and it is often necessary to rotate the original polarization to its orthogonal alternative.

<span class="mw-page-title-main">Perger prism</span>

A Perger prism or Perger–Porro prism system is a prism, that is used to invert an image. The special feature of this prism is that, like a traditional double Porro prism system, it manages this with only four beam deflections and has neither a roof edge with the accompanying phase correction problems, a mirrored surface or an air gap. However, in contrast to the traditional double Porro prism, it leads to a significantly reduced eyepiece/objective axis offset. The reduced beam offset allows for slimmer, more straight binocular housings usually found in roof prism binoculars. Complicating production requirements make high-quality roof prism binoculars relatively costly to produce compared to in optical quality equivalent Porro prism or "Perger–Porro prism system" binoculars.

<span class="mw-page-title-main">Anisotropic terahertz microspectroscopy</span> Spectroscopic technique

Anisotropic terahertz microspectroscopy (ATM) is a spectroscopic technique in which molecular vibrations in an anisotropic material are probed with short pulses of terahertz radiation whose electric field is linearly polarized parallel to the surface of the material. The technique has been demonstrated in studies involving single crystal sucrose, fructose, oxalic acid, and molecular protein crystals in which the spatial orientation of molecular vibrations are of interest.

References

  1. Smith, Warren (1990). Modern Optical Engineering (2nd ed.). McGraw-Hill. p. 102. ISBN   978-0-07-059174-5.