Nicol prism

Last updated
Nicol prism at the Mineralogical Collection "Luigi Bombicci Museum" of the University of Bologna, in Bologna Museo di mineralogia Luigi Bombicci (Bologna) abc1 Prisma di Nicol.jpg
Nicol prism at the Mineralogical Collection "Luigi Bombicci Museum" of the University of Bologna, in Bologna
Schematic representation of the propagation of light in a Nicol prism showing the splitting of unpolarized light into ordinary and extraordinary polarized rays Nicol prism.svg
Schematic representation of the propagation of light in a Nicol prism showing the splitting of unpolarized light into ordinary and extraordinary polarized rays

A Nicol prism is a type of polarizer. It is an optical device made from calcite crystal used to convert ordinary light into plane polarized light. It is made in such a way that it eliminates one of the rays by total internal reflection, i.e. the ordinary ray is eliminated and only the extraordinary ray is transmitted through the prism.

Contents

It was the first type of polarizing prism, invented in 1828 by William Nicol (1770–1851) of Edinburgh.

Mechanism

The Nicol prism consists of a rhombohedral crystal of Iceland spar (a variety of calcite) that has been cut at an angle of 68° with respect to the crystal axis, cut again diagonally, and then rejoined, using a layer of transparent Canada balsam as a glue. [1]

Unpolarized light ray enters through the side face of the crystal, and is split into two orthogonally polarized, differently directed rays by the birefringence property of calcite. The ordinary ray, or o-ray, experiences a refractive index of no = 1.658 in the calcite and undergoes a total internal reflection at the calcite–glue interface because of its angle of incidence at the glue layer (refractive index n = 1.550) exceeds the critical angle for the interface. It passes out the top side of the upper half of the prism with some refraction. The extraordinary ray, or e-ray, experiences a lower refractive index (ne = 1.486) in the calcite crystal and is not totally reflected at the interface because it strikes the interface at a sub-critical angle. The e-ray merely undergoes a slight refraction, or bending, as it passes through the interface into the lower half of the prism. It finally leaves the prism as a ray of plane-polarized light, undergoing another refraction, as it exits the opposite side of the prism. The two exiting rays have polarizations orthogonal (at right angles) to each other, but the lower, or e-ray, is the more commonly used for further experimentation because it is again traveling in the original horizontal direction, assuming that the calcite prism angles have been properly cut. The direction of the upper ray, or o-ray, is quite different from its original direction because it alone suffers total internal reflection at the glue interface, as well as a final refraction on exit from the upper side of the prism.

Uses

Nicol prisms were once widely used in mineralogical microscopy and polarimetry, and the term "using crossed Nicols" (abbreviated as XN) is still used to refer to the observing of a sample placed between orthogonally oriented polarizers.

In most instruments, however, Nicol prisms have been replaced by other types of polarizers such as polaroid sheets and Glan–Thompson prisms.

Related Research Articles

<span class="mw-page-title-main">Fresnel equations</span> Equations of light transmission and reflection

The Fresnel equations describe the reflection and transmission of light when incident on an interface between different optical media. They were deduced by French engineer and physicist Augustin-Jean Fresnel who was the first to understand that light is a transverse wave, when no one realized that the waves were electric and magnetic fields. For the first time, polarization could be understood quantitatively, as Fresnel's equations correctly predicted the differing behaviour of waves of the s and p polarizations incident upon a material interface.

<span class="mw-page-title-main">Refractive index</span> Ratio of the speed of light in vacuum to that in the medium

In optics, the refractive index of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.

<span class="mw-page-title-main">Refraction</span> Physical phenomenon relating to the direction of waves

In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.

<span class="mw-page-title-main">Total internal reflection</span> Reflection of a wave from a boundary between two media (rather than refraction)

In physics, total internal reflection (TIR) is the phenomenon in which waves arriving at the interface (boundary) from one medium to another are not refracted into the second ("external") medium, but completely reflected back into the first ("internal") medium. It occurs when the second medium has a higher wave speed than the first, and the waves are incident at a sufficiently oblique angle on the interface. For example, the water-to-air surface in a typical fish tank, when viewed obliquely from below, reflects the underwater scene like a mirror with no loss of brightness (Fig. 1).

<span class="mw-page-title-main">Brewster's angle</span> Angle of incidence for which all reflected light will be polarized

Brewster's angle is an angle of incidence at which light with a particular polarization is perfectly transmitted through a transparent dielectric surface, with no reflection. When unpolarized light is incident at this angle, the light that is reflected from the surface is therefore perfectly polarized. The angle is named after the Scottish physicist Sir David Brewster (1781–1868).

<span class="mw-page-title-main">Polarization (waves)</span> Property of waves that can oscillate with more than one orientation

Polarization is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves in solids.

<span class="mw-page-title-main">Birefringence</span> Property of materials whose refractive index depends on light polarization and direction

Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefringent or birefractive. The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress.

<span class="mw-page-title-main">Prism (optics)</span> Transparent optical element with flat, polished surfaces that refract light

An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.

<span class="mw-page-title-main">Canada balsam</span> Turpentine made from the resin of the balsam fir tree

Canada balsam, also called Canada turpentine or balsam of fir, is the oleoresin of the balsam fir tree of boreal North America. The resin, dissolved in essential oils, is a viscous, sticky, colourless or yellowish liquid that turns to a transparent yellowish mass when the essential oils have been allowed to evaporate.

<span class="mw-page-title-main">Wollaston prism</span>

A Wollaston prism is an optical device, invented by William Hyde Wollaston, that manipulates polarized light. It separates light into two separate linearly polarized outgoing beams with orthogonal polarization. The two beams will be polarized according to the optical axis of the two right angle prisms.

<span class="mw-page-title-main">Polarimetry</span> Measurement and interpretation of the polarization of transverse waves

Polarimetry is the measurement and interpretation of the polarization of transverse waves, most notably electromagnetic waves, such as radio or light waves. Typically polarimetry is done on electromagnetic waves that have traveled through or have been reflected, refracted or diffracted by some material in order to characterize that object.

<span class="mw-page-title-main">Polarizer</span> Optical filter device

A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well-defined polarization, known as polarized light. Polarizers are used in many optical techniques and instruments. Polarizers find applications in photography and LCD technology. In photography, a polarizing filter can be used to filter out reflections.

<span class="mw-page-title-main">Glan–Thompson prism</span> Type of polarizing prism

A Glan–Thompson prism is a type of polarizing prism similar to the Nicol prism and Glan–Foucault prism.

<span class="mw-page-title-main">Glan–Foucault prism</span> Type of polarizer

A Glan–Foucault prism is a type of prism which is used as a polarizer. It is similar in construction to a Glan–Thompson prism, except that two right-angled calcite prisms are spaced with an air gap instead of being cemented together. Total internal reflection of p-polarized light at the air gap means that only s-polarized light is transmitted straight through the prism.

<span class="mw-page-title-main">Glan–Taylor prism</span> Improved air-spaced calcite polarizer design

A Glan–Taylor prism is a type of prism which is used as a polarizer or polarizing beam splitter. It is one of the most common types of modern polarizing prism. It was first described by Archard and Taylor in 1948.

<span class="mw-page-title-main">Optical mineralogy</span> Optical properties of rocks and minerals

Optical mineralogy is the study of minerals and rocks by measuring their optical properties. Most commonly, rock and mineral samples are prepared as thin sections or grain mounts for study in the laboratory with a petrographic microscope. Optical mineralogy is used to identify the mineralogical composition of geological materials in order to help reveal their origin and evolution.

<span class="mw-page-title-main">Fresnel rhomb</span> Optical prism

A Fresnel rhomb is an optical prism that introduces a 90° phase difference between two perpendicular components of polarization, by means of two total internal reflections. If the incident beam is linearly polarized at 45° to the plane of incidence and reflection, the emerging beam is circularly polarized, and vice versa. If the incident beam is linearly polarized at some other inclination, the emerging beam is elliptically polarized with one principal axis in the plane of reflection, and vice versa.

<span class="mw-page-title-main">Sénarmont prism</span> Type of polarizer

The Sénarmont prism is a type of polariser. It is made from two prisms of a birefringent material such as calcite, usually cemented together. The Sénarmont prism is named after Henri Hureau de Sénarmont. It is similar to the Rochon and Wollaston prisms.

An optic axis of a crystal is a direction in which a ray of transmitted light suffers no birefringence. An optic axis is a direction rather than a single line: all rays that are parallel to that direction exhibit the same lack of birefringence.

<span class="mw-page-title-main">Plane of polarization</span> Concept in optics

For light and other electromagnetic radiation, the plane of polarization is the plane spanned by the direction of propagation and either the electric vector or the magnetic vector, depending on the convention. It can be defined for polarized light, remains fixed in space for linearly-polarized light, and undergoes axial rotation for circularly-polarized light.

References

  1. Greenslade, Thomas B. Jr. "Nicol Prism". Kenyon College. Retrieved 23 January 2014.