Canada balsam

Last updated
The balsam fir tree from which Canada Balsam is obtained is so-named because it is found almost entirely within Canada in the boreal forest region Abies balsamea range map 3.png
The balsam fir tree from which Canada Balsam is obtained is so-named because it is found almost entirely within Canada in the boreal forest region

Canada balsam, also called Canada turpentine or balsam of fir, is the oleoresin of the balsam fir tree (Abies balsamea) of boreal North America. The resin, dissolved in essential oils, is a viscous, sticky, colourless or yellowish liquid that turns to a transparent yellowish mass when the essential oils have been allowed to evaporate.

Contents

Canada balsam is amorphous when dried. It has poor thermal and solvent resistance. [1]

Uses

Slide of a holotype specimen of a flatworm (Lethacotyle fijiensis) permanently mounted in Canada balsam in 1953 Journal.pone.0079155.g001 Slide of holotype of Lethacotyle fijiensis Manter & Prince, 1953.png
Slide of a holotype specimen of a flatworm ( Lethacotyle fijiensis) permanently mounted in Canada balsam in 1953

Due to its high optical quality and the similarity of its refractive index to that of crown glass (n = 1.55), purified and filtered Canada balsam was traditionally used in optics as an invisible-when-dry glue for glass, such as lens elements. Other optical elements can be cemented with Canada balsam, such as two prisms bonded to form a beam splitter.

Canada balsam was also commonly used for making permanent microscope slides. From about 1830 molten Canada balsam was used for microscope slides, then Canada balsam in solution was introduced in 1843, becoming popular in the 1850s. [2] In biology, for example, it can be used to conserve microscopic samples by sandwiching the sample between a microscope slide and a glass coverslip, using Canada balsam to glue the arrangement together and enclose the sample to conserve it.

Canada balsam dissolved in xylene is also used for preparing slide mounts. [3] Some workers prefer terpene resin for slide mounts, as it is both less acidic and cheaper than balsam.

Another important application of Canada balsam is in the construction of the Nicol prism. A Nicol prism consists of a calcite crystal cut into two halves. Canada balsam is placed between the two layers. Calcite is an anisotropic crystal and has different refractive indices for rays polarized along directions parallel and perpendicular to its optic axis. These rays with differing refractive indices are known as the ordinary and extraordinary rays. The refractive index for Canada balsam is in between the refractive index for the ordinary and extraordinary rays. Hence the ordinary ray will be totally internally reflected. The emergent ray will be linearly polarized, and traditionally this has been one of the popular ways of producing polarized light.

Some other uses (traditional and current) include:

Balsam was phased out as an optical adhesive during World War II, in favour of polyester, epoxy, and urethane-based adhesives. In modern optical manufacturing, UV-cured epoxies are often used to bond lens elements. Synthetic resins have largely replaced organic balsams for use in slide mounts.

See also

Related Research Articles

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

<span class="mw-page-title-main">Refractive index</span> Ratio of the speed of light in vacuum to that in the medium

In optics, the refractive index of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.

In optics, an index-matching material is a substance, usually a liquid, cement (adhesive), or gel, which has an index of refraction that closely approximates that of another object.

<span class="mw-page-title-main">Birefringence</span> Property of materials whose refractive index depends on light polarization and direction

Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent. The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress.

<span class="mw-page-title-main">Microscope slide</span> Thin, flat piece of glass onto which a sample is placed to be examined under a microscope

A microscope slide is a thin flat piece of glass, typically 75 by 26 mm and about 1 mm thick, used to hold objects for examination under a microscope. Typically the object is mounted (secured) on the slide, and then both are inserted together in the microscope for viewing. This arrangement allows several slide-mounted objects to be quickly inserted and removed from the microscope, labeled, transported, and stored in appropriate slide cases or folders etc.

Petrography is a branch of petrology that focuses on detailed descriptions of rocks. Someone who studies petrography is called a petrographer. The mineral content and the textural relationships within the rock are described in detail. The classification of rocks is based on the information acquired during the petrographic analysis. Petrographic descriptions start with the field notes at the outcrop and include macroscopic description of hand-sized specimens. The most important petrographer's tool is the petrographic microscope. The detailed analysis of minerals by optical mineralogy in thin section and the micro-texture and structure are critical to understanding the origin of the rock.

A total internal reflection fluorescence microscope (TIRFM) is a type of microscope with which a thin region of a specimen, usually less than 200 nanometers can be observed.

<span class="mw-page-title-main">Wollaston prism</span>

A Wollaston prism is an optical device, invented by William Hyde Wollaston, that manipulates polarized light. It separates light into two separate linearly polarized outgoing beams with orthogonal polarization. The two beams will be polarized according to the optical axis of the two right angle prisms.

<span class="mw-page-title-main">Nicol prism</span> Optical polarizer made of two birefrengent calcite crystals

A Nicol prism is a type of polarizer. It is an optical device made from calcite crystal used to convert ordinary light into plane polarized light. It is made in such a way that it eliminates one of the rays by total internal reflection, i.e. the ordinary ray is eliminated and only the extraordinary ray is transmitted through the prism.

<span class="mw-page-title-main">William Nicol (geologist)</span> Scottish geologist and physicist

William Nicol FRSE FCS was a Scottish geologist and physicist who invented the Nicol prism, the first device for obtaining plane-polarized light, in 1828.

<span class="mw-page-title-main">Polarizer</span> Optical filter device

A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well-defined polarization, that is polarized light. The common types of polarizers are linear polarizers and circular polarizers. Polarizers are used in many optical techniques and instruments, and polarizing filters find applications in photography and LCD technology. Polarizers can also be made for other types of electromagnetic waves besides visible light, such as radio waves, microwaves, and X-rays.

<span class="mw-page-title-main">Glan–Thompson prism</span> Type of polarizing prism

A Glan–Thompson prism is a type of polarizing prism similar to the Nicol prism and Glan–Foucault prism.

<span class="mw-page-title-main">Thin section</span> Thin slice of a material prepared for microscopic examination

In optical mineralogy and petrography, a thin section is a thin slice of a rock or mineral sample, prepared in a laboratory, for use with a polarizing petrographic microscope, electron microscope and electron microprobe. A thin sliver of rock is cut from the sample with a diamond saw and ground optically flat. It is then mounted on a glass slide and then ground smooth using progressively finer abrasive grit until the sample is only 30 μm thick. The method uses the Michel-Lévy interference colour chart to determine thickness, typically using quartz as the thickness gauge because it is one of the most abundant minerals.

<span class="mw-page-title-main">Optical mineralogy</span> Optical properties of rocks and minerals

Optical mineralogy is the study of minerals and rocks by measuring their optical properties. Most commonly, rock and mineral samples are prepared as thin sections or grain mounts for study in the laboratory with a petrographic microscope. Optical mineralogy is used to identify the mineralogical composition of geological materials in order to help reveal their origin and evolution.

<span class="mw-page-title-main">Differential interference contrast microscopy</span> Optical microscopy technique

Differential interference contrast (DIC) microscopy, also known as Nomarski interference contrast (NIC) or Nomarski microscopy, is an optical microscopy technique used to enhance the contrast in unstained, transparent samples. DIC works on the principle of interferometry to gain information about the optical path length of the sample, to see otherwise invisible features. A relatively complex optical system produces an image with the object appearing black to white on a grey background. This image is similar to that obtained by phase contrast microscopy but without the bright diffraction halo. The technique was invented by Francis Hughes Smith. The "Smith DIK" was produced by Ernst Leitz Wetzlar in Germany and was difficult to manufacture. DIC was then developed further by Polish physicist Georges Nomarski in 1952.

<span class="mw-page-title-main">Nomarski prism</span> Type of polarizer

A Nomarski prism is a modification of the Wollaston prism that is used in differential interference contrast microscopy. It is named after its inventor, Polish and naturalized-French physicist Georges Nomarski. Like the Wollaston prism, the Nomarski prism consists of two birefringent crystal wedges cemented together at the hypotenuse. One of the wedges is identical to a conventional Wollaston wedge and has the optical axis oriented parallel to the surface of the prism. The second wedge of the prism is modified by cutting the crystal so that the optical axis is oriented obliquely with respect to the flat surface of the prism. The Nomarski modification causes the light rays to come to a focal point outside the body of the prism, and allows greater flexibility so that when setting up the microscope the prism can be actively focused.

<span class="mw-page-title-main">Petrographic microscope</span>

A petrographic microscope is a type of optical microscope used to identify rocks and minerals in thin sections. The microscope is used in optical mineralogy and petrography, a branch of petrology which focuses on detailed descriptions of rocks. The method includes aspects of polarized light microscopy (PLM).

<span class="mw-page-title-main">Oil immersion</span> Light microscopy technique

In light microscopy, oil immersion is a technique used to increase the resolving power of a microscope. This is achieved by immersing both the objective lens and the specimen in a transparent oil of high refractive index, thereby increasing the numerical aperture of the objective lens.

<span class="mw-page-title-main">Sénarmont prism</span> Type of polarizer

The Sénarmont prism is a type of polariser. It is made from two prisms of a birefringent material such as calcite, usually cemented together. The Sénarmont prism is named after Henri Hureau de Sénarmont. It is similar to the Rochon and Wollaston prisms.

The operation of a photon scanning tunneling microscope (PSTM) is analogous to the operation of an electron scanning tunneling microscope, with the primary distinction being that PSTM involves tunneling of photons instead of electrons from the sample surface to the probe tip. A beam of light is focused on a prism at an angle greater than the critical angle of the refractive medium in order to induce total internal reflection within the prism. Although the beam of light is not propagated through the surface of the refractive prism under total internal reflection, an evanescent field of light is still present at the surface.

References

  1. "The Bonding of Optical Elements – Techniques and Troubleshooting". Summers Optical. Archived from the original on February 20, 2007. Retrieved 10 Feb 2009.
  2. Bracegirdle, Brian (1989-09-01). "The development of biological preparative techniques for light microscopy, 1839–1989". Journal of Microscopy. 155 (3): 307–318. doi:10.1111/j.1365-2818.1989.tb02892.x. ISSN   1365-2818. S2CID   93268790.
  3. Gage, Simon Henry (1941). The Microscope (17 ed.). Ithaca, NY: Comstock. p. 443. OCLC   547782.