In optics, a dispersive prism is an optical prism that is used to disperse light, that is, to separate light into its spectral components (the colors of the rainbow). Different wavelengths (colors) of light will be deflected by the prism at different angles. [1] This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.
Triangular prisms are the most common type of dispersive prism. Other types of dispersive prism exist that have more than two optical interfaces; some of them combine refraction with total internal reflection.
Light changes speed as it moves from one medium to another (for example, from air into the glass of the prism). This speed change causes the light to be refracted and to enter the new medium at a different angle (Huygens principle). The degree of bending of the light's path depends on the angle that the incident beam of light makes with the surface, and on the ratio between the refractive indices of the two media (Snell's law). The refractive index of many materials (such as glass) varies with the wavelength or color of the light used, a phenomenon known as dispersion . This causes light of different colors to be refracted differently and to leave the prism at different angles, creating an effect similar to a rainbow. This can be used to separate a beam of white light into its constituent spectrum of colors.
Prisms will generally disperse light over a much larger frequency bandwidth than diffraction gratings, making them useful for broad-spectrum spectroscopy. Furthermore, prisms do not suffer from complications arising from overlapping spectral orders, which all gratings have. A usual disadvantage of prisms is lower dispersion than a well-chosen grating can achieve.
Prisms are sometimes used for the internal reflection at the surfaces rather than for dispersion. If light inside the prism hits one of the surfaces at a sufficiently steep angle, total internal reflection occurs and all of the light is reflected. This makes a prism a useful substitute for a mirror in some situations.
Ray angle deviation and dispersion through a prism can be determined by tracing a sample ray through the element and using Snell's law at each interface. For the prism shown at right, the indicated angles are given by
All angles are positive in the direction shown in the image. For a prism in air . Defining , the deviation angle is given by
If the angle of incidence and prism apex angle are both small, and if the angles are expressed in radians. This allows the nonlinear equation in the deviation angle to be approximated by
The deviation angle depends on wavelength through n, so for a thin prism the deviation angle varies with wavelength according to
Aligning multiple prisms in series can enhance the dispersion greatly, or vice versa, allow beam manipulation with suppressed dispersion.
As shown above, the dispersive behaviour of each prism depends strongly on the angle of incidence, which is determined by the presence of surrounding prisms. Therefore, the resulting dispersion is not a simple sum of individual contributions (unless all prisms can be approximated as thin ones).
Although the refractive index is dependent on the wavelength in every material, some materials have a much more powerful wavelength dependence (are much more dispersive) than others. Unfortunately, high-dispersion regions tend to be spectrally close to regions where the material becomes opaque.
Crown glasses such as BK7 have a relatively small dispersion (and can be used roughly between 330 and 2500 nm), while flint glasses have a much stronger dispersion for visible light and hence are more suitable for use as dispersive prisms, but their absorption sets on already around 390 nm. Fused quartz, sodium chloride and other optical materials are used at ultraviolet and infrared wavelengths where normal glasses become opaque.
The top angle of the prism (the angle of the edge between the input and output faces) can be widened to increase the spectral dispersion. However it is often chosen so that both the incoming and outgoing light rays hit the surface at around the Brewster angle; beyond the Brewster angle reflection losses increase greatly and angle of view is reduced. Most frequently, dispersive prisms are equilateral (apex angle of 60 degrees).
Like many basic geometric terms, the word prism (Greek : πρίσμα, romanized: prisma, lit. 'something sawed') was first used in Euclid's Elements. Euclid defined the term in Book XI as "a solid figure contained by two opposite, equal and parallel planes, while the rest are parallelograms", however the nine subsequent propositions that used the term included examples of triangular-based prisms (i.e. with sides which were not parallelograms). [2] This inconsistency caused confusion amongst later geometricians. [3] [4]
René Descartes had seen light separated into the colors of the rainbow by glass or water, [5] though the source of the color was unknown. Isaac Newton's 1666 experiment of bending white light through a prism demonstrated that all the colors already existed in the light, with different color "corpuscles" fanning out and traveling with different speeds through the prism. It was only later that Young and Fresnel combined Newton's particle theory with Huygens' wave theory to explain how color arises from the spectrum of light.
Newton arrived at his conclusion by passing the red color from one prism through a second prism and found the color unchanged. From this, he concluded that the colors must already be present in the incoming light – thus, the prism did not create colors, but merely separated colors that are already there. He also used a lens and a second prism to recompose the spectrum back into white light. This experiment has become a classic example of the methodology introduced during the scientific revolution. The results of the experiment dramatically transformed the field of metaphysics, leading to John Locke's primary vs secondary quality distinction.[ citation needed ]
Newton discussed prism dispersion in great detail in his book Opticks . [6] He also introduced the use of more than one prism to control dispersion. [7] Newton's description of his experiments on prism dispersion was qualitative. A quantitative description of multiple-prism dispersion was not needed until multiple prism laser beam expanders were introduced in the 1980s. [8]
A diffraction grating may be ruled onto one face of a prism to form an element called a "grism". Spectrographs are extensively used in astronomy to observe the spectra of stars and other astronomical objects. Insertion of a grism in the collimated beam of an astronomical imager transforms that camera into a spectrometer, since the beam still continues in approximately the same direction when passing through it. The deflection of the prism is constrained to exactly cancel the deflection due to the diffraction grating at the spectrometer's central wavelength.
A different sort of spectrometer component called an immersed grating also consists of a prism with a diffraction grating ruled on one surface. However, in this case the grating is used in reflection, with light hitting the grating from inside the prism before being totally internally reflected back into the prism (and leaving from a different face). The reduction of the light's wavelength inside the prism results in an increase of the resulting spectral resolution by the ratio of the prism's refractive index to that of air.
With either a grism or immersed grating, the primary source of spectral dispersion is the grating. Any effect due to chromatic dispersion from the prism itself is incidental, as opposed to actual prism-based spectrometers.
An artist's rendition of a dispersive prism is seen on the cover of Pink Floyd's The Dark Side of the Moon , one of the best-selling albums of all time. Somewhat unrealistically, the iconic graphic shows a divergent ray of white light passing the prism, separating into its spectrum only after leaving the prism's rear facet.
In optics, the refractive index of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.
In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.
In optics, a diffraction grating is an optical grating with a periodic structure that diffracts light, or another type of electromagnetic radiation, into several beams traveling in different directions. The emerging coloration is a form of structural coloration. The directions or diffraction angles of these beams depend on the wave (light) incident angle to the diffraction grating, the spacing or periodic distance between adjacent diffracting elements on the grating, and the wavelength of the incident light. The grating acts as a dispersive element. Because of this, diffraction gratings are commonly used in monochromators and spectrometers, but other applications are also possible such as optical encoders for high-precision motion control and wavefront measurement.
Snell's law is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air. In optics, the law is used in ray tracing to compute the angles of incidence or refraction, and in experimental optics to find the refractive index of a material. The law is also satisfied in meta-materials, which allow light to be bent "backward" at a negative angle of refraction with a negative refractive index.
Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. Sometimes the term chromatic dispersion is used for to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium.
An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides. Not all optical prisms are geometric prisms, and not all geometric prisms would count as an optical prism. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance from the object, and also when it is viewed at the focal plane of an imaging lens. In contrast, the diffraction pattern created near the diffracting object and is given by the Fresnel diffraction equation.
Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances.
A prism coupler is a prism designed to couple a substantial fraction of the power contained in a beam of light into a thin film to be used as a waveguide without the need for precision polishing of the edge of the film, without the need for sub-micrometer alignment precision of the beam and the edge of the film, and without the need for matching the numerical aperture of the beam to the film. Using a prism coupler, a beam coupled into a thin film can have a diameter hundreds of times the thickness of the film. Invention of the coupler contributed to the initiation of a field of study known as integrated optics.
A prism compressor is an optical device used to shorten the duration of a positively chirped ultrashort laser pulse by giving different wavelength components a different time delay. It typically consists of two prisms and a mirror. Figure 1 shows the construction of such a compressor. Although the dispersion of the prism material causes different wavelength components to travel along different paths, the compressor is built such that all wavelength components leave the compressor at different times, but in the same direction. If the different wavelength components of a laser pulse were already separated in time, the prism compressor can make them overlap with each other, thus causing a shorter pulse.
Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound through an ultrasonic grating.
A 22° halo is an atmospheric optical phenomenon that consists of a halo with an apparent diameter of approximately 22° around the Sun or Moon. Around the Sun, it may also be called a sun halo. Around the Moon, it is also known as a moon ring, storm ring, or winter halo. It forms as sunlight or moonlight is refracted by millions of hexagonal ice crystals suspended in the atmosphere. Its radius, as viewed from Earth, is roughly the length of an outstretched hand at arm's length.
Free spectral range (FSR) is the spacing in optical frequency or wavelength between two successive reflected or transmitted optical intensity maxima or minima of an interferometer or diffractive optical element.
A blazed grating – also called echelette grating – is a special type of diffraction grating. It is optimized to achieve maximum grating efficiency in a given diffraction order. For this purpose, maximum optical power is concentrated in the desired diffraction order while the residual power in the other orders is minimized. Since this condition can only exactly be achieved for one wavelength, it is specified for which blaze wavelength the grating is optimized. The direction in which maximum efficiency is achieved is called the blaze angle and is the third crucial characteristic of a blazed grating directly depending on blaze wavelength and diffraction order.
The first description of multiple-prism arrays, and multiple-prism dispersion, was given by Newton in his book Opticks. Prism pair expanders were introduced by Brewster in 1813. A modern mathematical description of the single-prism dispersion was given by Born and Wolf in 1959. The generalized multiple-prism dispersion theory was introduced by Duarte and Piper in 1982.
Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. Feynman's approach was extended to N-slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. The N-slit interferometer was first applied in the generation and measurement of complex interference patterns.
Thin-film interference is a natural phenomenon in which light waves reflected by the upper and lower boundaries of a thin film interfere with one another, increasing reflection at some wavelengths and decreasing it at others. When white light is incident on a thin film, this effect produces colorful reflections.
Multiple-prism grating laser oscillators, or MPG laser oscillators, use multiple-prism beam expansion to illuminate a diffraction grating mounted either in Littrow configuration or grazing-incidence configuration. Originally, these narrow-linewidth tunable dispersive oscillators were introduced as multiple-prism Littrow (MPL) grating oscillators, or hybrid multiple-prism near-grazing-incidence (HMPGI) grating cavities, in organic dye lasers. However, these designs were quickly adopted for other types of lasers such as gas lasers, diode lasers, and more recently fiber lasers.
A compound prism is a set of multiple triangular prism elements placed in contact, and often cemented together to form a solid assembly. The use of multiple elements gives several advantages to an optical designer:
Littrow expansion and its counterpart Littrow compression are optical effects associated with slitless imaging spectrographs. These effects are named after Austrian physicist Otto von Littrow.