Eyeglass prescription

Last updated
Using a phoropter to determine a prescription for eyeglasses GlassPerscriptionRig.jpg
Using a phoropter to determine a prescription for eyeglasses

An eyeglass prescription is an order written by an eyewear prescriber, such as an optometrist, that specifies the value of all parameters the prescriber has deemed necessary to construct and/or dispense corrective lenses appropriate for a patient. If an eye examination indicates that corrective lenses are appropriate, the prescriber generally provides the patient with an eyewear prescription at the conclusion of the exam.

Contents

The parameters specified on spectacle prescriptions vary, but typically include the patient's name, power of the lenses, any prism to be included, the pupillary distance, expiration date, and the prescriber's signature. The prescription is typically determined during a refraction, using a phoropter and asking the patient which of two lenses is better, or by an automated refractor, or through the technique of retinoscopy. A dispensing optician will take a prescription written by an optometrist and order and/or assemble the frames and lenses to then be dispensed to the patient.

Components of a sphero-cylindrical correction

Sphere component

Positive meniscus lenses provide positive diopters, while negative meniscus lenses provide negative diopters. Basecurve power.png
Positive meniscus lenses provide positive diopters, while negative meniscus lenses provide negative diopters.

Every corrective lens prescription includes a spherical correction in diopters. Convergent powers are positive (e.g., +4.00 D) and condense light to correct for farsightedness/long-sightedness (hyperopia) or allow the patient to read more comfortably (see presbyopia and binocular vision disorders). Divergent powers are negative (e.g., −3.75 D) and spread out light to correct for nearsightedness/short-sightedness (myopia). If neither convergence nor divergence is required in the prescription, "plano" is used to denote a refractive power of zero.

The term "sphere" comes from the geometry of lenses. Lenses derive their power from curved surfaces. A spherical lens has the same curvature in every direction perpendicular to the optical axis. Spherical lenses are adequate correction when a person has no astigmatism. To correct for astigmatism, the "cylinder" and "axis" components specify how a particular lens is different from a lens composed of purely spherical surfaces.

Cylinder component

Patients with astigmatism need a cylindrical lens, or more generally a toric lens to see clearly. The geometry of a toric lens focuses light differently in different meridians. A meridian, in this case, is a plane that is incident with the optical axis. For example, a toric lens, when rotated correctly, could focus an object to the image of a horizontal line at one focal distance while focusing a vertical line to a separate focal distance.

The power of a toric lens can be specified by describing how the cylinder (the meridian that is most different from the spherical power) differs from the spherical power. Power evenly transitions between the two powers as you move from the meridian with the most convergence to the meridian with the least convergence. For regular toric lenses, these powers are perpendicular to each other and their location relative to vertical and horizontal are specified by the axis component.

There are two different conventions for indicating the amount of cylinder: "plus cylinder notation" and "minus cylinder notation". In the former, the cylinder power is a number of diopters more convergent than the sphere power. That means the spherical power describes the most divergent meridian and the cylindrical component describes the most convergent. In the minus cylinder notation, the cylinder power is a number of diopters more divergent than the sphere component. In this convention, the sphere power describes the most convergent meridian and the cylinder component describes the most divergent. Europe typically follows the plus cylinder convention while in the United States the minus cylinder notation is used by optometrists and the plus cylinder notation is used by ophthalmologists. Minus cylinder notation is also more common in Asia, although either style may be encountered there. There is no difference in these forms of notation and it is easy to convert between them: [1]

For example, a lens with a vertical power of −3.75 and a horizontal power of −2.25 could be specified as either −2.25 −1.50 × 180 or −3.75 +1.50 × 090.

Axis component

This phoropter is set to an axis of 180 for each eye. This can be seen by noticing the tiny white arrows that are horizontal as they point to the tiny numbers that line the opening the patient looks through. Click the image to see a full resolution version where the individual axis markings become more visible. Geraet beim Optiker.jpg
This phoropter is set to an axis of 180 for each eye. This can be seen by noticing the tiny white arrows that are horizontal as they point to the tiny numbers that line the opening the patient looks through. Click the image to see a full resolution version where the individual axis markings become more visible.

The axis defines the location of the sphere and cylinder powers. The name "axis" comes from the concept of generating a cylinder by rotating a line around an axis. The curve of that cylinder is 90° from that axis of rotation. When dealing with toric lenses, the axis defines the orientation of the steepest and flattest curvatures relative to horizontal and vertical. The "3 o'clock" position is defined as zero, and the 90th meridian is a vertical line. A horizontal line passes through both zero and the 180th meridians. By convention, a horizontal axis is recorded as 180.

In a regular toric lens, the flattest and steepest curvatures are separated by 90°. As a result, the axis of the cylinder is also the meridian with the same power as the recorded sphere power. The cylinder power, as defined above is the power that is most different from the sphere power. Because they are defined relative to each other, it is important to know if the lens is being described in minus cylinder notation, where the sphere power is the most convergent / least divergent power. When using plus cylinder notation, the opposite is true.

If the lens is spherical (there is no cylinder component) then there is no need for an axis. A prescription like this is written with D.S. (diopters sphere) after the sphere power (e.g., −3.00 D.S.). This verifies that the prescription is truly spherical rather than the cylinder power being omitted in error.

Summary

  • correction power is measured in diopters
  • by convention, an axis of 90° is vertical, 0° or 180° are horizontal
  • if the cylinder power is positive, the lens is most convergent 90° from the axis
  • if the cylinder power is negative, the lens is most divergent 90° from the axis
  • if the cylinder power is zero, the lens is spherical and has the same power in every meridian
Sample prescription

A prescription of −1.00 +0.25 × 180 describes a lens that has a horizontal power of −1.00 D and a vertical power of −0.75 D. Only ophthalmologists write prescriptions in + cylinder. An optometrist would write a prescription in - (minus) cylinder. All spectacle and contact lenses would be made in minus cylinder. Therefore, the above prescription would be written as −0.75 −0.25 × 90.

Abbreviations and terms

An eyeglass prescription Specrx-prescription2.jpg
An eyeglass prescription

Similar to medical prescriptions, eyeglass prescriptions are written on paper pads or included in a patient's electronic health record, and contain a number of different abbreviations and terms:

Related Research Articles

<span class="mw-page-title-main">Corrective lens</span> Type of lens to improve visual perception

A corrective lens is a transmissive optical device that is worn on the eye to improve visual perception. The most common use is to treat refractive errors: myopia, hypermetropia, astigmatism, and presbyopia. Glasses or "spectacles" are worn on the face a short distance in front of the eye. Contact lenses are worn directly on the surface of the eye. Intraocular lenses are surgically implanted most commonly after cataract removal but can be used for purely refractive purposes.

<span class="mw-page-title-main">Dioptre</span> Unit of measurement of optical power

A dioptre or diopter, symbol dpt, is a unit of measurement with dimension of reciprocal length, equivalent to one reciprocal metre, 1 dpt = 1 m−1. It is normally used to express the optical power of a lens or curved mirror, which is a physical quantity equal to the reciprocal of the focal length, expressed in metres. For example, a 3-dioptre lens brings parallel rays of light to focus at 13 metre. A flat window has an optical power of zero dioptres, as it does not cause light to converge or diverge. Dioptres are also sometimes used for other reciprocals of distance, particularly radii of curvature and the vergence of optical beams.

<span class="mw-page-title-main">Optician</span> Profession that makes or fits eyeglasses

An optician is an individual who fits eyeglasses or contact lenses by filling a refractive prescription from an optometrist or ophthalmologist. They are able to translate and adapt ophthalmic prescriptions, dispense products, and work with accessories. There are several specialties within the field.

<span class="mw-page-title-main">Astigmatism (optical systems)</span> Optical aberration

An optical system with astigmatism is one where rays that propagate in two perpendicular planes have different foci. If an optical system with astigmatism is used to form an image of a cross, the vertical and horizontal lines will be in sharp focus at two different distances. The term comes from the Greek α- (a-) meaning "without" and στίγμα (stigma), "a mark, spot, puncture".

<span class="mw-page-title-main">Intraocular lens</span> Lens implanted in the eye to treat cataracts or myopia

An Intraocular lens (IOL) is a lens implanted in the eye usually as part of a treatment for cataracts or for correcting other vision problems such as short sightedness and long sightedness, a form of refractive surgery. If the natural lens is left in the eye, the IOL is known as phakic, otherwise it is a pseudophakic lens. Both kinds of IOLs are designed to provide the same light-focusing function as the natural crystalline lens. This can be an alternative to LASIK, but LASIK is not an alternative to an IOL for treatment of cataracts.

Anisometropia is a condition in which a person's eyes have substantially differing refractive power. Generally, a difference in power of one diopter (1D) is the threshold for diagnosis of the condition. Patients may have up to 3D of anisometropia before the condition becomes clinically significant due to headache, eye strain, double vision or photophobia.

<span class="mw-page-title-main">Eye examination</span> Series of tests assessing vision and pertaining to the eyes

An eye examination is a series of tests performed to assess vision and ability to focus on and discern objects. It also includes other tests and examinations pertaining to the eyes. Eye examinations are primarily performed by an optometrist, ophthalmologist, or an orthoptist. Health care professionals often recommend that all people should have periodic and thorough eye examinations as part of routine primary care, especially since many eye diseases are asymptomatic.

<span class="mw-page-title-main">Autorefractor</span>

An autorefractor or automated refractor is a computer-controlled machine used during an eye examination to provide an objective measurement of a person's refractive error and prescription for glasses or contact lenses. This is achieved by measuring how light is changed as it enters a person's eye.

<span class="mw-page-title-main">Phoropter</span> Ophthalmic testing device

A phoropter or refractor is an ophthalmic testing device. It is commonly used by eye care professionals during an eye examination, and contains different lenses used for refraction of the eye during sight testing, to measure an individual's refractive error and determine their eyeglass prescription. It also is used to measure the patients' phorias and ductions, which are characteristics of binocularity.

<span class="mw-page-title-main">Aspheric lens</span> Type of lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

<span class="mw-page-title-main">Astigmatism</span> Type of eye defect

Astigmatism is a type of refractive error due to rotational asymmetry in the eye's refractive power. This results in distorted or blurred vision at any distance. Other symptoms can include eyestrain, headaches, and trouble driving at night. Astigmatism often occurs at birth and can change or develop later in life. If it occurs in early life and is left untreated, it may result in amblyopia.

<span class="mw-page-title-main">Lensmeter</span> Ophthalmic instrument mainly used by optometrists and opticians

A lensmeter or lensometer (sometimes even known as focimeter or vertometer), is an ophthalmic instrument. It is mainly used by optometrists and opticians to measure the back or front vertex power of a spectacle lens and verify the correct prescription in a pair of eyeglasses, to properly orient and mark uncut lenses, and to confirm the correct mounting of lenses in spectacle frames. Lensmeters can also verify the power of contact lenses, if a special lens support is used.

<span class="mw-page-title-main">Toric lens</span> Type of lens

A toric lens is a lens with different optical power and focal length in two orientations perpendicular to each other. One of the lens surfaces is shaped like a "cap" from a torus, and the other one is usually spherical. Such a lens behaves like a combination of a spherical lens and a cylindrical lens. Toric lenses are used primarily in eyeglasses, contact lenses and intraocular lenses to correct astigmatism.

<span class="mw-page-title-main">Vertex distance</span>

Vertex distance is the distance between the back surface of a corrective lens, i.e. glasses (spectacles) or contact lenses, and the front of the cornea. Increasing or decreasing the vertex distance changes the optical properties of the system, by moving the focal point forward or backward, effectively changing the power of the lens relative to the eye. Since most refractions are performed at a vertex distance of 12–14 mm, the power of the correction may need to be modified from the initial prescription so that light reaches the patient's eye with the same effective power that it did through the phoropter or trial frame.

<span class="mw-page-title-main">Prism correction</span>

Eye care professionals use prism correction as a component of some eyeglass prescriptions. A lens which includes some amount of prism correction will displace the viewed image horizontally, vertically, or a combination of both directions. The most common application for this is the treatment of strabismus. By moving the image in front of the deviated eye, double vision can be avoided and comfortable binocular vision can be achieved. Other applications include yoked prism where the image is shifted an equal amount in each eye. This is useful when someone has a visual field defect on the same side of each eye. Individuals with nystagmus, Duane's retraction syndrome, 4th Nerve Palsy, and other eye movement disorders experience an improvement in their symptoms when they turn or tilt their head. Yoked prism can move the image away from primary gaze without the need for a constant head tilt or turn.

Vision of humans and other organisms depends on several organs such as the lens of the eye, and any vision correcting devices, which use optics to focus the image.

The eye, like any other optical system, suffers from a number of specific optical aberrations. The optical quality of the eye is limited by optical aberrations, diffraction and scatter. Correction of spherocylindrical refractive errors has been possible for nearly two centuries following Airy's development of methods to measure and correct ocular astigmatism. It has only recently become possible to measure the aberrations of the eye and with the advent of refractive surgery it might be possible to correct certain types of irregular astigmatism.

<span class="mw-page-title-main">Subjective refraction</span> Technique to determine the combination of lenses that will provide the best corrected visual acuity

Subjective Refraction is a technique to determine the combination of lenses that will provide the best corrected visual acuity (BCVA). It is a clinical examination used by orthoptists, optometrists and ophthalmologists to determine a patient's need for refractive correction, in the form of glasses or contact lenses. The aim is to improve current unaided vision or vision with current glasses. Glasses must also be comfortable visually. The sharpest final refraction is not always the final script the patient wears comfortably.

<span class="mw-page-title-main">Ophthalmic trial frame</span> Tool used in eye examination

A trial frame is a tool used by ophthalmic professionals like ophthalmologists and optometrists. It is basically an adjustable spectacle frame with multiple cells, used to hold corrective lenses, and other accessories in subjective refraction and retinoscopy.

<span class="mw-page-title-main">Jackson cross cylinder</span> Ophthalmic instrument

The Jackson cross cylinder (JCC) is an instrument used by ophthalmologists, orthoptists and optometrists in their routine eye examination, particularly in determination of corrective lens power in patients with astigmatism. It is also used for testing near point of the eye.

References

  1. "NHS Optical Benefits in the UK - Wikibooks, open books for an open world". en.wikibooks.org. Retrieved 1 November 2017.