Vertex distance

Last updated
Vertex distance Vertex distance.svg
Vertex distance

Vertex distance is the distance between the back surface of a corrective lens, i.e. glasses (spectacles) or contact lenses, and the front of the cornea. Increasing or decreasing the vertex distance changes the optical properties of the system, by moving the focal point forward or backward, effectively changing the power of the lens relative to the eye. Since most refractions (the measurement that determines the power of a corrective lens) are performed at a vertex distance of 12–14 mm, the power of the correction may need to be modified from the initial prescription so that light reaches the patient's eye with the same effective power that it did through the phoropter or trial frame. [1]

Contents

Vertex distance is important when converting between contact lens and glasses prescriptions and becomes significant if the glasses prescription is beyond ±4.00 diopters (often abbreviated D). The formula for vertex correction is , where Fc is the power corrected for vertex distance, F is the original lens power, and x is the change in vertex distance in meters.

Derivation

The vertex distance formula calculates what power lens (Fc) is needed to focus light on the same location if the lens has been moved by a distance x. To focus light to the same image location:

where fc is the corrected focal length for the new lens, f is the focal length of the original lens, and x is the distance that the lens was moved. The value for x can be positive or negative depending on the sign convention. Lens power in diopters is the mathematical inverse of focal length in meters.

Substituting for lens power arrives at

After simplifying the final equation is found:

Examples

Example 1: example prescription adjustment from glasses to contacts

A phoropter measurement of a patient reads −8.00 D sphere and −5.25 D cylinder with an axis of 85° for one eye (the notation for which is typically written as −8 −5.25×85). The phoropter measurement is made at a common vertex distance of 12 mm from the eye. The equivalent prescription at the patient's cornea (say, for a contact lens) can be calculated as follows (this example assumes a negative cylinder sign convention):

Power 1 is the spherical value, and power 2 is the steeper power of the astigmatic axis:

The axis value does not change with vertex distance, so the equivalent prescription for a contact lens (vertex distance, 0 mm) is −7.30 D of sphere, −4.13 D of cylinder with 85° of axis (−7.30 −4.13×85 or about −7.25 −4.25×85).

Example 2: example prescription adjustment from contacts to glasses

A patient has −8 D sphere contacts. What is the equivalent prescription for glasses?

Therefore −8 D contacts correspond to −8.75 D or −9 D glasses.

Example 3: sample plots

Corrected and uncorrected spherical power for a vertex distance of 12 mm. VertexDistance.svg
Corrected and uncorrected spherical power for a vertex distance of 12 mm.
Difference in spherical power at a vertex distance of 12 mm versus 0 mm. VertexDistanceDiff.svg
Difference in spherical power at a vertex distance of 12 mm versus 0 mm.

The following plots show the difference in spherical power at a 0 mm vertex distance (at the eye) and a 12 mm vertex distance (standard eyeglasses distance). 0 mm is used as the reference starting power and is one-to-one. The second plot shows the difference between the 0 mm and 12 mm vertex distance powers. Above around 4D of spherical power, the difference versus the corrected power becomes more than 0.25 D and is clinically significant.

Related Research Articles

<span class="mw-page-title-main">Lens</span> Optical device which transmits and refracts light

A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic and are ground, polished, or molded to the required shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Sphere</span> Set of points equidistant from a center

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Spherical coordinate system</span> 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.

<span class="mw-page-title-main">Numerical aperture</span> Characteristic of an optical system

In optics, the numerical aperture (NA) of an optical system is a dimensionless number that characterizes the range of angles over which the system can accept or emit light. By incorporating index of refraction in its definition, NA has the property that it is constant for a beam as it goes from one material to another, provided there is no refractive power at the interface. The exact definition of the term varies slightly between different areas of optics. Numerical aperture is commonly used in microscopy to describe the acceptance cone of an objective, and in fiber optics, in which it describes the range of angles within which light that is incident on the fiber will be transmitted along it.

<span class="mw-page-title-main">Corrective lens</span> Type of lens to improve visual perception

A corrective lens is a transmissive optical device that is worn on the eye to improve visual perception. The most common use is to treat refractive errors: myopia, hypermetropia, astigmatism, and presbyopia. Glasses or "spectacles" are worn on the face a short distance in front of the eye. Contact lenses are worn directly on the surface of the eye. Intraocular lenses are surgically implanted most commonly after cataract removal but can be used for purely refractive purposes.

The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light. A system with a shorter focal length bends the rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly. For the special case of a thin lens in air, a positive focal length is the distance over which initially collimated (parallel) rays are brought to a focus, or alternatively a negative focal length indicates how far in front of the lens a point source must be located to form a collimated beam. For more general optical systems, the focal length has no intuitive meaning; it is simply the inverse of the system's optical power.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Cylindrical coordinate system</span> 3-dimensional coordinate system

A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis (axis L in the image opposite), the direction from the axis relative to a chosen reference direction (axis A), and the distance from a chosen reference plane perpendicular to the axis (plane containing the purple section). The latter distance is given as a positive or negative number depending on which side of the reference plane faces the point.

<span class="mw-page-title-main">Centroid</span> Mean ("average") position of all the points in a shape

In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any object in -dimensional Euclidean space.

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Completing the square</span> Method for solving quadratic equations

In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form

<span class="mw-page-title-main">Eyeglass prescription</span> Order written by an eyewear prescriber

An eyeglass prescription is an order written by an eyewear prescriber, such as an optometrist, that specifies the value of all parameters the prescriber has deemed necessary to construct and/or dispense corrective lenses appropriate for a patient. If an eye examination indicates that corrective lenses are appropriate, the prescriber generally provides the patient with an eyewear prescription at the conclusion of the exam.

Anisometropia is a condition in which a person's eyes have substantially differing refractive power. Generally, a difference in power of one diopter (1D) is the threshold for diagnosis of the condition. Patients may have up to 3D of anisometropia before the condition becomes clinically significant due to headache, eye strain, double vision or photophobia.

<span class="mw-page-title-main">Cylinder</span> Three-dimensional solid

A cylinder has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base.

In geometric optics, distortion is a deviation from rectilinear projection; a projection in which straight lines in a scene remain straight in an image. It is a form of optical aberration.

<span class="mw-page-title-main">Aspheric lens</span> Type of lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

<span class="mw-page-title-main">Lenticular lens</span>

A lenticular lens is an array of lenses, designed so that when viewed from slightly different angles, different parts of the image underneath are shown. The most common example is the lenses used in lenticular printing, where the technology is used to give an illusion of depth, or to make images that appear to change or move as the image is viewed from different angles.

<span class="mw-page-title-main">Close-up lens</span> Secondary lens used to enable macro photography

In photography, a close-up lens is a simple secondary lens used to enable macro photography without requiring a specialised primary lens. They work like reading glasses, allowing a primary lens to focus more closely. Bringing the focus closer allows the photographer more possibilities.

<span class="mw-page-title-main">Subjective refraction</span> Technique to determine the combination of lenses that will provide the best corrected visual acuity

Subjective Refraction is a technique to determine the combination of lenses that will provide the best corrected visual acuity (BCVA). It is a clinical examination used by orthoptists, optometrists and ophthalmologists to determine a patient's need for refractive correction, in the form of glasses or contact lenses. The aim is to improve current unaided vision or vision with current glasses. Glasses must also be comfortable visually. The sharpest final refraction is not always the final script the patient wears comfortably.

References

  1. Brooks, Clifford (1992). Understanding Lens Surfacing. pp. 241–245. ISBN   0-7506-9177-8.