Alternative photography |
---|
Gum printing is a way of making photographic reproductions without the use of silver halides. The process uses salts of dichromate in common with a number of other related processes such as sun printing.
Gum prints tend to be multi-layered images sometimes combined with other alternative process printing methods such as cyanotype and platinotype. A heavy weight cotton watercolor or printmaking paper that can withstand repeated and extended soakings is best. Each layer of pigment is individually coated, registered, exposed and washed. Separation negatives of cyan, magenta, and yellow or red, green, and blue are used for a full-color image. Some photographers prefer substituting the cyan emulsion in the CMYK separations with a cyanotype layer. A simple duotone separation combining orange watercolor pigment and a cyanotype can yield surprisingly beautiful results.
Gum bichromate, or gum dichromate as it is also known, is a photographic printing process invented in the early days of photography when, in 1839, Mungo Ponton discovered that dichromates are light sensitive. William Henry Fox Talbot later found that sensitized dichromated colloids such as gelatin and gum arabic became insoluble in water after exposure to sunlight. Alphonse Poitevin added carbon pigment to the colloids in 1855, creating the first carbon print. In 1858, John Pouncy used colored pigment with gum arabic to create the first color images.
When mixtures of mucilaginous, protein-containing materials together with soluble salts of dichromate are exposed to ultraviolet light, the protein content becomes tanned and resistant to solution in water. The untanned material can be washed away in warm water leaving a hardened, tanned protein negative.
For gum printing a solution of gum arabic is mixed with either potassium or ammonium dichromate. The higher the proportion of dichromate, the more sensitive the mixture. However, increasing the concentration of dichromate also reduces the contrast which is very low at best. The right concentration of dichromate is always a compromise between speed and contrast.
Using ammonium dichromate allows concentrations up to 15% of the active ingredient whereas potassium dichromate is limited to about 10%. Exceeding these concentrations results in deposits of chromic acid in the dried film which ruins any attempts at printing. The greatest sensitivity expressed as an ASA speed rating is estimated to be about ASA 0.003. The resulting mucilaginous mixture is spread on a suitable base and allowed to dry in the dark. A contact negative the same size of the finished print is then placed on top of the dried coating and exposed to an ultraviolet light source, typically bright sunshine.
Often more than one negative is used to provide detail in all tonal ranges. Using multiple exposures requires very careful registration. In exposing the paper, the thinnest parts of the negatives will allow the most exposure and cause the areas to be darker. The densest parts of the negative require more exposure.
The exposed print is then developed gradually in a succession of trays of still water (approximately ten-minute intervals) at room temperature until the bath water is clear. The gum is soft and easily removed at this stage. The negative is then carefully dried until the negative image will be visible as raised areas of clear colourless gum. This surface can then be inked using proprietary oil-based printing ink and impressions made using a simple pressure printing press. Each negative can be made to yield several copies or even copies in different colours. However the fragile nature of the dried gum surface usually will restrict re-use to only one or two copies.
Gum bichromate is a 19th-century photographic printing process based on the light sensitivity of dichromates. It is capable of rendering painterly images from photographic negatives. Gum printing is traditionally a multi-layered printing process, but satisfactory results may be obtained from a single pass. Any color can be used for gum printing, so natural-color photographs are also possible by using this technique in layers.
Gum bichromate, or gum dichromate as it is also known, is a photographic printing process invented in the early days of photography when, in 1839, Mungo Ponton discovered that dichromates are light sensitive. William Henry Fox Talbot later found that sensitized dichromated colloids such as gelatin and gum arabic became insoluble in water after exposure to sunlight. Alphonse Poitevin added carbon pigment to the colloids in 1855, creating the first carbon print. In 1858, John Pouncy used colored pigment with gum arabic to create the first color images.
Low density photographic negatives of the same size as the final image are used for exposing the print. No enlarger is used, but instead, a contact printing frame or vacuum exposure frame is used with an ultraviolet light source such as a mercury vapor lamp, a common fluorescent black light, or the sun. The negative is sandwiched between the prepared paper and a sheet of glass in registration with previous passes.
The print is then floated face down in a bath of room-temperature water to allow the soluble gum, excess dichromate, and pigment to wash away. Several changes of water bath are necessary to clear the print. Afterwards, the print is hung to dry. When all layers are complete and dry, a clearing bath of sodium metabisulfite is used to extract any remaining dichromate so the print will be archival.
Lithography is a planographic method of printing originally based on the immiscibility of oil and water. The printing is from a stone or a metal plate with a smooth surface. It was invented in 1796 by the German author and actor Alois Senefelder and was initially used mostly for musical scores and maps. Lithography can be used to print text or images onto paper or other suitable material. A lithograph is something printed by lithography, but this term is only used for fine art prints and some other, mostly older, types of printed matter, not for those made by modern commercial lithography.
Photographic processing or photographic development is the chemical means by which photographic film or paper is treated after photographic exposure to produce a negative or positive image. Photographic processing transforms the latent image into a visible image, makes this permanent and renders it insensitive to light.
The cyanotype is a slow-reacting, photographic printing formulation sensitive to a limited near ultraviolet and blue light spectrum, the range 300 nm to 400 nm known as UVA radiation. It produces a monochrome, blue coloured print on a range of supports, often used for art, and for reprography in the form of blueprints. For any purpose, the process usually uses two chemicals: ferric ammonium citrate or ferric ammonium oxalate, and potassium ferricyanide, and only water to develop and fix. Announced in 1842, it is still in use.
In photography, a negative is an image, usually on a strip or sheet of transparent plastic film, in which the lightest areas of the photographed subject appear darkest and the darkest areas appear lightest. This reversed order occurs because the extremely light-sensitive chemicals a camera film must use to capture an image quickly enough for ordinary picture-taking are darkened, rather than bleached, by exposure to light and subsequent photographic processing.
A darkroom is used to process photographic film, make prints and carry out other associated tasks. It is a room that can be made completely dark to allow the processing of light-sensitive photographic materials, including film and photographic paper. Various equipment is used in the darkroom, including an enlarger, baths containing chemicals, and running water.
The gelatin silver process is the most commonly used chemical process in black-and-white photography, and is the fundamental chemical process for modern analog color photography. As such, films and printing papers available for analog photography rarely rely on any other chemical process to record an image. A suspension of silver salts in gelatin is coated onto a support such as glass, flexible plastic or film, baryta paper, or resin-coated paper. These light-sensitive materials are stable under normal keeping conditions and are able to be exposed and processed even many years after their manufacture. The "dry plate" gelatin process was an improvement on the collodion wet-plate process dominant from the 1850s–1880s, which had to be exposed and developed immediately after coating.
Photogravure is a process for printing photographs, also sometimes used for reproductive intaglio printmaking. It is a photo-mechanical process whereby a copper plate is grained and then coated with a light-sensitive gelatin tissue which had been exposed to a film positive, and then etched, resulting in a high quality intaglio plate that can reproduce detailed continuous tones of a photograph.
Potassium dichromate, K2Cr2O7, is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health. It is a crystalline ionic solid with a very bright, red-orange color. The salt is popular in laboratories because it is not deliquescent, in contrast to the more industrially relevant salt sodium dichromate.
The science of photography is the use of chemistry and physics in all aspects of photography. This applies to the camera, its lenses, physical operation of the camera, electronic camera internals, and the process of developing film in order to take and develop pictures properly.
Sun printing may refer to various printing techniques which use sunlight as a developing or fixative agent.
The term alternative process refers to any non-traditional or non-commercial photographic printing process. Currently, the standard analog photographic printing process for black-and-white photographs is the gelatin silver process. Standard digital processes include the pigment print, and digital laser exposures on traditional color photographic paper.
A carbon print is a photographic print with an image consisting of pigmented gelatin, rather than of silver or other metallic particles suspended in a uniform layer of gelatin, as in typical black-and-white prints, or of chromogenic dyes, as in typical photographic color prints.
The following outline is provided as an overview of and topical guide to photography:
A Woodburytype is both a printing process and the print that it produces. In technical terms, the process is a photomechanical rather than a photographic one, because sensitivity to light plays no role in the actual printing. The process produces very high quality continuous tone images in monochrome, with surfaces that show a slight relief effect. Essentially, a Woodburytype is a mold produced copy of an original photographic negative with a tonal range similar to a carbon print.
Photographic emulsion is a light-sensitive colloid used in film-based photography. Most commonly, in silver-gelatin photography, it consists of silver halide crystals dispersed in gelatin. The emulsion is usually coated onto a substrate of glass, films, paper, or fabric. The substrate is often flexible and known as a film base.
Dye transfer is a continuous-tone color photographic printing process. It was used to print Technicolor films, as well as to produce paper colour prints used in advertising, or large transparencies for display.
The digital negative is the collective name for methods used by photographers to create negatives on transparency film for the contact printing of alternative photographic techniques. The negatives can also be enlarged using traditional gelatin silver processes, though this is usually reserved for negatives of 4x5" or larger due to quality limitations imposed by printer technology. This set of techniques is separate from the Digital negative (DNG) file format, although this format may be used to create digital negative transparencies.
A contact copier is a device used to copy an image by illuminating a film negative with the image in direct contact with a photosensitive surface. The more common processes are negative, where clear areas in the original produce an opaque or hardened photosensitive surface, but positive processes are available. The light source is usually an actinic bulb internal or external to the device
The oil print process is a photographic printmaking process that dates to the mid-19th century. Oil prints are made on paper on which a thick gelatin layer has been sensitized to light using dichromate salts. After the paper is exposed to light through a negative, the gelatin emulsion is treated in such a way that highly exposed areas take up an oil-based paint, forming the photographic image.
{{citation}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)