In photography, a long-focus lens is a camera lens which has a focal length that is longer than the diagonal measure of the film or sensor that receives its image. [1] [2] It is used to make distant objects appear magnified with magnification increasing as longer focal length lenses are used. A long-focus lens is one of three basic photographic lens types classified by relative focal length, the other two being a normal lens and a wide-angle lens. [3] As with other types of camera lenses, the focal length is usually expressed in a millimeter value written on the lens, for example: a 500 mm lens. The most common type of long-focus lens is the telephoto lens, which incorporate a special lens group known as a telephoto group to make the physical length of the lens shorter than the focal length. [4]
Long-focus lenses are best known for making distant objects appear magnified. This effect is similar to moving closer to the object, but is not the same, since perspective is a function solely of viewing location. Two images taken from the same location, one with a wide angle lens and the other with a long-focus lens, will show identical perspective, in that near and far objects appear the same relative size to each other. Comparing magnification by using a long lens to magnification by moving closer, however, the long-focus-lens shot appears to compress the distance between objects due to the perspective from the more distant location. Long lenses thus give a photographer an alternative to the type of perspective distortion exhibited by shorter focal length lenses where (when the photographer stands closer to the given subject) different portions of a subject in a photograph can appear out of proportion to each other.
Long lenses also make it easier to blur the background more, even when the depth of field is the same; photographers will sometimes use this effect to defocus the background in an image to "separate" it from the subject. This background blurring is often referred to as bokeh by photographers. Long lenses are often used with a tripod, because of the increased weight and the fact that the effect of camera shake is magnified.
Effect of different focal lengths on photographs taken from the same place:
The above photos were taken using a 35 mm camera, using lenses of the given focal lengths.
The photographer often moves to keep the same image size on the film for a particular object. Observe in the comparison images below that although the foreground object remains the same size, the background changes size; thus, perspective is dependent on the distance between the photographer and the subject. The longer focus lenses compress the perception of depth, and the shorter focus exaggerate it. [5] This effect is also used for dolly zooms. The perspective of the so-called normal lens, 50 mm focal length for 35 mm film format, is conventionally regarded as a "correct" perspective, though a longer lens is usually preferred for a more pleasing perspective for portraits.
From the invention of photography in the 19th century, images have been captured using standard optical telescopes including telescope objectives adapted as early portrait lenses. [6] Besides being used in an astronomical role in astrophotography, telescopes are adapted as long-focus lenses in nature photography, surveillance, machine vision and long-focus microscopy. [7]
To use a telescope as a camera lens requires an adapter for the standard 1.25 inch tube eyepiece mount, usually a T-mount adapter, which in turn attaches to an adapter for the system camera's particular lens mount. Controlling exposure is done by exposure time, gain, or filters since telescopes almost always lack diaphragms for aperture adjustment. The 1.25 inch mount is smaller than many film and sensor formats so they tend to show vignetting around the field edges. [8] Telescopes are normally intended for visual use, so they are not corrected to produce a large flat field like dedicated camera lenses and tend to show optical aberration.
Since the late 1990s compact digital cameras have been used in afocal photography, a technique where the camera lens is left attached, taking a picture directly through the telescope's eyepiece lens itself, also referred to as " digiscoping ."
The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light. A system with a shorter focal length bends the rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly. For the special case of a thin lens in air, a positive focal length is the distance over which initially collimated (parallel) rays are brought to a focus, or alternatively a negative focal length indicates how far in front of the lens a point source must be located to form a collimated beam. For more general optical systems, the focal length has no intuitive meaning; it is simply the inverse of the system's optical power.
Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects invisible to the human eye such as dim stars, nebulae, and galaxies. This is accomplished through long time exposure as both film and digital cameras can accumulate and sum photons over long periods of time.
The angle of view is the decisive variable for the visual perception of the size or projection of the size of an object.
A camera lens is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.
In photography and cinematography, a wide-angle lens refers to a lens whose focal length is substantially smaller than the focal length of a normal lens for a given film plane. This type of lens allows more of the scene to be included in the photograph, which is useful in architectural, interior and landscape photography where the photographer may not be able to move farther from the scene to photograph it.
A telephoto lens, in photography and cinematography, is a specific type of a long-focus lens in which the physical length of the lens is shorter than the focal length. This is achieved by incorporating a special lens group known as a telephoto group that extends the light path to create a long-focus lens in a much shorter overall design. The angle of view and other effects of long-focus lenses are the same for telephoto lenses of the same specified focal length. Long-focal-length lenses are often informally referred to as telephoto lenses, although this is technically incorrect: a telephoto lens specifically incorporates the telephoto group.
A refracting telescope is a type of optical telescope that uses a lens as its objective to form an image. The refracting telescope design was originally used in spyglasses and astronomical telescopes but is also used for long-focus camera lenses. Although large refracting telescopes were very popular in the second half of the 19th century, for most research purposes, the refracting telescope has been superseded by the reflecting telescope, which allows larger apertures. A refractor's magnification is calculated by dividing the focal length of the objective lens by that of the eyepiece.
An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.
A zoom lens is a mechanical assembly of lens elements for which the focal length can be varied, as opposed to a fixed-focal-length (FFL) lens.
In optical engineering, the objective is the optical element that gathers light from the object being observed and focuses the light rays to produce a real image. Objectives can be a single lens or mirror, or combinations of several optical elements. They are used in microscopes, binoculars, telescopes, cameras, slide projectors, CD players and many other optical instruments. Objectives are also called object lenses, object glasses, or objective glasses.
In photography and cinematography, perspective distortion is a warping or transformation of an object and its surrounding area that differs significantly from what the object would look like with a normal focal length, due to the relative scale of nearby and distant features. Perspective distortion is determined by the relative distances at which the image is captured and viewed, and is due to the angle of view of the image being either wider or narrower than the angle of view at which the image is viewed, hence the apparent relative distances differing from what is expected. Related to this concept is axial magnification -- the perceived depth of objects at a given magnification.
Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification". When this number is less than one, it refers to a reduction in size, sometimes called magnification or de-magnification.
An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is named because it is usually the lens that is closest to the eye when someone looks through the device. The objective lens or mirror collects light and brings it to focus creating an image. The eyepiece is placed near the focal point of the objective to magnify this image. The amount of magnification depends on the focal length of the eyepiece.
In film and photography, a prime lens is a fixed focal length photographic lens, typically with a maximum aperture from f2.8 to f1.2. The term can also mean the primary lens in a combination lens system. Confusion between these two meanings can occur without clarifying context. Alternate terms, such as primary focal length, fixed focal length, or FFL are sometimes used to avoid ambiguity.
Macro photography is extreme close-up photography, usually of very small subjects and living organisms like insects, in which the size of the subject in the photograph is greater than life size . By the original definition, a macro photograph is one in which the size of the subject on the negative or image sensor is life size or greater. In some senses, however, it refers to a finished photograph of a subject that is greater than life size.
A teleconverter is a secondary lens mounted between a camera and a photographic lens which enlarges the central part of an image obtained by the lens. For example, a 2× teleconverter for a 35 mm camera enlarges the central 12×18 mm part of an image to the size of 24×36 mm in the standard 35 mm film format.
The Barlow lens, named after Peter Barlow, is a diverging lens which, used in series with other optics in an optical system, increases the effective focal length of an optical system as perceived by all components that are after it in the system. The practical result is that inserting a Barlow lens magnifies the image. A real barlow lens is not a single glass element, because that would generate chromatic aberration, and spherical aberration if the lens is not aspheric. More common configurations use three or more elements for achromatic correction or apochromatic correction and higher image quality.
In optics and photography, infinity focus is the state where a lens or other optical system forms an image of an object an infinite distance away. This corresponds to the point of focus for parallel rays. The image is formed at the focal point of the lens.
Tilt–shift photography is the use of camera movements that change the orientation or position of the lens with respect to the film or image sensor on cameras.
Afocal photography, also called afocal imaging or afocal projection is a method of photography where the camera with its lens attached is mounted over the eyepiece of another image forming system such as an optical telescope or optical microscope, with the camera lens taking the place of the human eye.