Kerala school of astronomy and mathematics | |
---|---|
Location | |
Central and Northern Kerala, India | |
Information | |
Type | Astronomy, Mathematics, Science |
Founder | Madhava of Sangamagrama |
The Kerala school of astronomy and mathematics or the Kerala school was a school of mathematics and astronomy founded by Madhava of Sangamagrama in Tirur, Malappuram, Kerala, India, which included among its members: Parameshvara, Neelakanta Somayaji, Jyeshtadeva, Achyuta Pisharati, Melpathur Narayana Bhattathiri and Achyuta Panikkar. The school flourished between the 14th and 16th centuries and its original discoveries seem to have ended with Narayana Bhattathiri (1559–1632). In attempting to solve astronomical problems, the Kerala school independently discovered a number of important mathematical concepts. Their most important results—series expansion for trigonometric functions—were described in Sanskrit verse in a book by Neelakanta called Tantrasangraha (around 1500), and again in a commentary on this work, called Tantrasangraha-vakhya, of unknown authorship. The theorems were stated without proof, but proofs for the series for sine, cosine, and inverse tangent were provided a century later in the work Yuktibhasa (c. 1530), written in Malayalam, by Jyesthadeva, and also in a commentary on Tantrasangraha. [1]
Their work, completed two centuries before the invention of calculus in Europe, provided what is now considered the first example of a power series (apart from geometric series). [2] [3] [4]
Islamic scholars nearly developed a general formula for finding integrals of polynomials by 1000 AD —and evidently could find such a formula for any polynomial in which they were interested. But, it appears, they were not interested in any polynomial of degree higher than four, at least in any of the material that has been found to date. Indian scholars, on the other hand, were by the year 1600 able to use formula similar to Ibn al-Haytham's sum formula for arbitrary integral powers in calculating power series for the functions in which they were interested. By the same time, they also knew how to calculate the differentials of these functions. So some of the basic ideas of calculus were known in Egypt and India many centuries before Isaac Newton. It does not appear, however, that either Islamic or Indian mathematicians saw the necessity of connecting some of the disparate ideas that we include under the name calculus. They were apparently only interested in specific cases in which these ideas were needed. [5] [6]
The Kerala school has made a number of contributions to the fields of infinite series and calculus. These include the following infinite geometric series:
The Kerala school made intuitive use of mathematical induction, though the inductive hypothesis was not yet formulated or employed in proofs. [1] They used this to discover a semi-rigorous proof of the result:
for large n.
They applied ideas from (what was to become) differential and integral calculus to obtain (Taylor–Maclaurin) infinite series for , , and . [8] The Tantrasangraha-vakhya gives the series in verse, which when translated to mathematical notation, can be written as: [1]
where, for the series reduce to the standard power series for these trigonometric functions, for example:
(The Kerala school did not use the "factorial" symbolism.)
The Kerala school made use of the rectification (computation of length) of the arc of a circle to give a proof of these results. (The later method of Leibniz, using quadrature (i.e. computation of area under the arc of the circle), was not yet developed.) [1] They also made use of the series expansion of to obtain an infinite series expression (later known as Gregory series) for : [1]
Their rational approximation of the error for the finite sum of their series are of particular interest. For example, the error, , (for n odd, and i = 1, 2, 3) for the series:
They manipulated the terms, using the partial fraction expansion of : to obtain a more rapidly converging series for : [1]
They used the improved series to derive a rational expression, [1] for correct up to nine decimal places, i.e. . They made use of an intuitive notion of a limit to compute these results. [1] The Kerala school mathematicians also gave a semi-rigorous method of differentiation of some trigonometric functions, [9] though the notion of a function, or of exponential or logarithmic functions, was not yet formulated.
In 1825 John Warren published a memoir on the division of time in southern India, [10] called the Kala Sankalita, which briefly mentions the discovery of infinite series by Kerala astronomers.
The works of the Kerala school were first written up for the Western world by Englishman C. M. Whish in 1835. According to Whish, the Kerala mathematicians had "laid the foundation for a complete system of fluxions" and these works abounded "with fluxional forms and series to be found in no work of foreign countries". [11] However, Whish's results were almost completely neglected until over a century later, when the discoveries of the Kerala school were investigated again by C. T. Rajagopal and his associates. Their work includes commentaries on the proofs of the arctan series in Yuktibhasa given in two papers, [12] [13] a commentary on the Yuktibhasa's proof of the sine and cosine series [14] and two papers that provide the Sanskrit verses of the Tantrasangrahavakhya for the series for arctan, sin, and cosine (with English translation and commentary). [15] [16]
In 1972 K. V. Sarma published his A History of the Kerala School of Hindu Astronomy which described features of the School such as the continuity of knowledge transmission from the 13th to the 17th century: Govinda Bhattathiri to Parameshvara to Damodara to Nilakantha Somayaji to Jyesthadeva to Acyuta Pisarati. Transmission from teacher to pupil conserved knowledge in "a practical, demonstrative discipline like astronomy at a time when there was not a proliferation of printed books and public schools."
In 1994 it was argued that the heliocentric model had been adopted about 1500 A.D. in Kerala. [17]
A. K. Bag suggested in 1979 that knowledge of these results might have been transmitted to Europe through the trade route from Kerala by traders and Jesuit missionaries. [18] Kerala was in continuous contact with China and Arabia, and Europe. The suggestion of some communication routes and a chronology by some scholars [19] [20] could make such a transmission a possibility; however, there is no direct evidence by way of relevant manuscripts that such a transmission took place. [20] According to David Bressoud, "there is no evidence that the Indian work of series was known beyond India, or even outside of Kerala, until the nineteenth century". [8] [21] V. J. Katz notes some of the ideas of the Kerala school have similarities to the work of 11th-century Iraqi scholar Ibn al-Haytham, [9] suggesting a possible transmission of ideas from Islamic mathematics to Kerala. [22]
Both Indian and Arab scholars made discoveries before the 17th century that are now considered a part of calculus. [9] According to Katz, they were yet to "combine many differing ideas under the two unifying themes of the derivative and the integral, show the connection between the two, and turn calculus into the great problem-solving tool we have today", like Newton and Leibniz. [9] The intellectual careers of both Newton and Leibniz are well documented and there is no indication of their work not being their own; [9] however, it is not known with certainty whether the immediate predecessors of Newton and Leibniz, "including, in particular, Fermat and Roberval, learned of some of the ideas of the Islamic and Indian mathematicians through sources of which we are not now aware". [9] This is an active area of current research, especially in the manuscript collections of Spain and Maghreb, research that is now being pursued, among other places, at the Centre national de la recherche scientifique in Paris. [9]
The number π is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159. The number π appears in many formulae across mathematics and physics. It is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an equation involving only finite sums, products, powers, and integers. The transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of π appear to be randomly distributed, but no proof of this conjecture has been found.
In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.
A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Fourier series§Definition.
In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that
Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics, important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, Varāhamihira, and Madhava. The decimal number system in use today was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, and algebra. In addition, trigonometry was further advanced in India, and, in particular, the modern definitions of sine and cosine were developed there. These mathematical concepts were transmitted to the Middle East, China, and Europe and led to further developments that now form the foundations of many areas of mathematics.
Mādhava of Sangamagrāma (Mādhavan) was an Indian mathematician and astronomer who is considered to be the founder of the Kerala school of astronomy and mathematics in the Late Middle Ages. Madhava made pioneering contributions to the study of infinite series, calculus, trigonometry, geometry and algebra. He was the first to use infinite series approximations for a range of trigonometric functions, which has been called the "decisive step onward from the finite procedures of ancient mathematics to treat their limit-passage to infinity".
Approximations for the mathematical constant pi in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .
Yuktibhāṣā, also known as Gaṇita-yukti-bhāṣā and Gaṇitanyāyasaṅgraha, is a major treatise on mathematics and astronomy, written by the Indian astronomer Jyesthadeva of the Kerala school of mathematics around 1530. The treatise, written in Malayalam, is a consolidation of the discoveries by Madhava of Sangamagrama, Nilakantha Somayaji, Parameshvara, Jyeshtadeva, Achyuta Pisharati, and other astronomer-mathematicians of the Kerala school. It also exists in a Sanskrit version, with unclear author and date, composed as a rough translation of the Malayalam original.
This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.
The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.
A timeline of calculus and mathematical analysis.
In mathematics, the arctangent series, traditionally called Gregory's series, is the Taylor series expansion at the origin of the arctangent function:
Madhava's sine table is the table of trigonometric sines constructed by the 14th century Kerala mathematician-astronomer Madhava of Sangamagrama. The table lists the jya-s or Rsines of the twenty-four angles from 3.75° to 90° in steps of 3.75°. Rsine is just the sine multiplied by a selected radius and given as an integer. In this table, as in Aryabhata's earlier table, R is taken as 21600 ÷ 2π ≈ 3437.75.
In mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century in Kerala, India by the mathematician and astronomer Madhava of Sangamagrama or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are:
The Kingdom of Tanur was one of the numerous feudal principalities on the Malabar Coast of the Indian subcontinent during the Middle Ages. It was ruled by a Hindu dynasty, claiming kshatriya status, known as the Tanur dynasty. The kingdom comprised parts of the coastal Taluks of Tirurangadi, Tirur, and Ponnani taluks in present-day Malappuram district and included places such as Tanur, Tirur (Trikkandiyur) and Chaliyam. The coastal villages of Kadalundi and Chaliyam in the southernmost area of Kozhikode district was also under Tanur Swaroopam.
In mathematics, Bhāskara I's sine approximation formula is a rational expression in one variable for the computation of the approximate values of the trigonometric sines discovered by Bhāskara I, a seventh-century Indian mathematician. This formula is given in his treatise titled Mahabhaskariya. It is not known how Bhāskara I arrived at his approximation formula. However, several historians of mathematics have put forward different hypotheses as to the method Bhāskara might have used to arrive at his formula. The formula is elegant and simple, and it enables the computation of reasonably accurate values of trigonometric sines without the use of geometry.
Kriyakramakari (Kriyā-kramakarī) is an elaborate commentary in Sanskrit written by Sankara Variar and Narayana, two astronomer-mathematicians belonging to the Kerala school of astronomy and mathematics, on Bhaskara II's well-known textbook on mathematics Lilavati. Kriyakramakari, along with Yuktibhasa of Jyeshthadeva, is one of the main sources of information about the work and contributions of Sangamagrama Madhava, the founder of Kerala school of astronomy and mathematics. Also the quotations given in this treatise throw much light on the contributions of several mathematicians and astronomers who had flourished in an earlier era. There are several quotations ascribed to Govindasvami a 9th-century astronomer from Kerala.
Madhava's correction term is a mathematical expression attributed to Madhava of Sangamagrama, the founder of the Kerala school of astronomy and mathematics, that can be used to give a better approximation to the value of the mathematical constant π (pi) than the partial sum approximation obtained by truncating the Madhava–Leibniz infinite series for π. The Madhava–Leibniz infinite series for π is