Universal Transverse Mercator coordinate system

Last updated

The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system.

Contents

Most zones in UTM span 6 degrees of longitude, and each has a designated central meridian. The scale factor at the central meridian is specified to be 0.9996 of true scale for most UTM systems in use. [1] [2]

UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted Universal Transverse Mercator zones.svg
UTM zones on an equirectangular world map with irregular zones in red and New York City's zone highlighted

History

The National Oceanic and Atmospheric Administration (NOAA) website states that the system was developed by the United States Army Corps of Engineers, starting in the early 1940s. [3] However, a series of aerial photos found in the Bundesarchiv-Militärarchiv (the military section of the German Federal Archives) apparently dating from 1943–1944 bear the inscription UTMREF followed by grid letters and digits, and projected according to the transverse Mercator, [4] a finding that would indicate that something called the UTM Reference system was developed in the 1942–43 time frame by the Wehrmacht. It was probably carried out by the Abteilung für Luftbildwesen (Department for Aerial Photography). From 1947 onward the US Army employed a very similar system, but with the now-standard 0.9996 scale factor at the central meridian as opposed to the German 1.0. [4] For areas within the contiguous United States the Clarke Ellipsoid of 1866 [5] was used. For the remaining areas of Earth, including Hawaii, the International Ellipsoid [6] was used. The World Geodetic System WGS84 ellipsoid is now generally used to model the Earth in the UTM coordinate system, which means current UTM northing at a given point can differ up to 200 meters from the old. For different geographic regions, other datum systems can be used.

Prior to the development of the Universal Transverse Mercator coordinate system, several European nations demonstrated the utility of grid-based conformal maps by mapping their territory during the interwar period. Calculating the distance between two points on these maps could be performed more easily in the field (using the Pythagorean theorem) than was possible using the trigonometric formulas required under the graticule-based system of latitude and longitude. In the post-war years, these concepts were extended into the Universal Transverse Mercator/Universal Polar Stereographic (UTM/UPS) coordinate system, which is a global (or universal) system of grid-based maps.

The transverse Mercator projection is a variant of the Mercator projection, which was originally developed by the Flemish geographer and cartographer Gerardus Mercator, in 1570. This projection is conformal, which means it preserves angles and therefore shapes across small regions. However, it distorts distance and area.

Definitions

UTM zone

Simplified view of contiguous US UTM zones, projected with Lambert conformal conic. Utm-zones-USA.svg
Simplified view of contiguous US UTM zones, projected with Lambert conformal conic.

The UTM system divides the Earth into 60 zones, each 6° of longitude in width. Zone 1 covers longitude 180° to 174° W; zone numbering increases eastward to zone 60, which covers longitude 174°E to 180°. The polar regions south of 80°S and north of 84°N are excluded, and instead covered by the universal polar stereographic (UPS) coordinate system.

Each of the 60 zones uses a transverse Mercator projection that can map a region of large north-south extent with low distortion. By using narrow zones of 6° of longitude (up to 668 km) in width, and reducing the scale factor along the central meridian to 0.9996 (a reduction of 1:2500), the amount of distortion is held below 1 part in 1,000 inside each zone. Distortion of scale increases to 1.0010 at the zone boundaries along the equator.

In each zone the scale factor of the central meridian reduces the diameter of the transverse cylinder to produce a secant projection with two standard lines, or lines of true scale, about 180 km on each side of, and about parallel to, the central meridian (Arc cos 0.9996 = 1.62° at the Equator). The scale is less than 1 inside the standard lines and greater than 1 outside them, but the overall distortion is minimized.

Exceptions

The UTM zones are uniform across the globe, except in two areas. On the southwest coast of Norway, zone 32 is extended 3° further west, and zone 31 is correspondingly shrunk to cover only open water. Also, in the region around Svalbard, the zones 32, 34 and 36 are not used, while zones 31 (9° wide), 33 (12° wide), 35 (12° wide), and 37 (9° wide) are extended to cover the gaps.

Overlapping grids

Universal Transverse Mercator (UTM) Grid Zones 31N through 37N differ from the standard 6deg wide by 84deg zone for the northern hemisphere, in part to accommodate the western part of the Kingdom of Norway. For more on its history, see Clifford J. Mugnier's article on Grids & Datums of The Kingdom of Norway that appeared in the October 1999 issue of PE&RS http://www.asprs.org/a/resources/grids/10-99-norway.pdf Modified UTM Zones.png
Universal Transverse Mercator (UTM) Grid Zones 31N through 37N differ from the standard 6° wide by 84° zone for the northern hemisphere, in part to accommodate the western part of the Kingdom of Norway. For more on its history, see Clifford J. Mugnier's article on Grids & Datums of The Kingdom of Norway that appeared in the October 1999 issue of PE&RS http://www.asprs.org/a/resources/grids/10-99-norway.pdf

Distortion of scale increases in each UTM zone as the boundaries between the UTM zones are approached. However, it is often convenient or necessary to measure a series of locations on a single grid when some are located in two adjacent zones. Around the boundaries of large scale maps (1:100,000 or larger) coordinates for both adjoining UTM zones are usually printed within a minimum distance of 40 km on either side of a zone boundary. Ideally, the coordinates of each position should be measured on the grid for the zone in which they are located, but because the scale factor is still relatively small near zone boundaries, it is possible to overlap measurements into an adjoining zone for some distance when necessary.

Latitude bands

Latitude bands are not a part of UTM, [7] but rather a part of the military grid reference system (MGRS). [8] They are however sometimes included in UTM notation. Including latitude bands in UTM notation can lead to ambiguous coordinates—as the letter "S" either refers to the southern hemisphere or a latitude band in the northern hemisphere—and should therefore be avoided.

Locating a position using UTM coordinates

A position on the Earth is given by the UTM zone number and hemisphere designator and the easting and northing planar coordinate pair in that zone.

The point of origin of each UTM zone is the intersection of the equator and the zone's central meridian. To avoid dealing with negative numbers, a false Easting of −500000 meters is added to the central meridian. Thus a point that has an easting of 400000 meters is about 100 km west of the central meridian. For most such points, the true distance would be slightly more than 100 km as measured on the surface of the Earth because of the distortion of the projection. UTM eastings range from about 166000 meters to 834000 meters at the equator.

In the northern hemisphere positions are measured northward from zero at the equator. The maximum "northing" value is about 9300000 meters at latitude 84 degrees North, the north end of the UTM zones. The southern hemisphere's northing at the equator is set at 10000000 meters. Northings decrease southward from these 10000000 meters to about 1100000 meters at 80 degrees South, the south end of the UTM zones. Therefore, no point has a negative northing value.

For example, the CN Tower is at 43°38′33.24″N79°23′13.7″W / 43.6425667°N 79.387139°W / 43.6425667; -79.387139 (CN Tower) , which is in UTM zone 17, and the grid position is 630084 m east, 4833438 m north. Two points in Zone 17 have these coordinates, one in the northern hemisphere and one in the south; the non-ambiguous format is to specify the full zone and hemisphere designator, that is, "17N 630084 4833438".

Simplified formulae

These formulae are truncated version of Transverse Mercator: flattening series, which were originally derived by Johann Heinrich Louis Krüger in 1912. [9] They are accurate to around a millimeter within 3000 km of the central meridian. [10] Concise commentaries for their derivation have also been given. [11] [12]

The WGS 84 spatial reference system describes Earth as an oblate spheroid along north-south axis with an equatorial radius of km and an inverse flattening of . Let's take a point of latitude and of longitude and compute its UTM coordinates as well as point scale factor and meridian convergence using a reference meridian of longitude . By convention, in the northern hemisphere km and in the southern hemisphere km. By convention also and km.

In the following formulas, the distances are in kilometers. First, here are some preliminary values:

From latitude, longitude (φ, λ) to UTM coordinates (E, N)

First we compute some intermediate values:

The final formulae are:

where is Easting, is Northing, is the Scale Factor, and is the Grid Convergence.

From UTM coordinates (E, N, Zone, Hemi) to latitude, longitude (φ, λ)

Note: Hemi = +1 for Northern, Hemi = −1 for Southern

First let's compute some intermediate values:

The final formulae are:

See also

Related Research Articles

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">Mercator projection</span> Cylindrical conformal map projection

The Mercator projection is a conformal cylindrical map projection first presented by Flemish geographer and mapmaker Gerardus Mercator in 1569. In the 18th century, it became the standard map projection for navigation due to its property of representing rhumb lines as straight lines. When applied to world maps, the Mercator projection inflates the size of lands the further they are from the equator. Therefore, landmasses such as Greenland and Antarctica appear far larger than they actually are relative to landmasses near the equator. Nowadays the Mercator projection is widely used because, aside from marine navigation, it is well suited for internet web maps.

<span class="mw-page-title-main">3-sphere</span> Mathematical object

In mathematics, a hypersphere, 3-sphere, or glome is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point. The interior of a 3-sphere is a 4-ball, or a gongyl.

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Rhumb line</span> Arc crossing all meridians of longitude at the same angle

In navigation, a rhumb line, rhumb, or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant azimuth . Navigation on a fixed course would result in a rhumb-line track.

In mathematical physics, n-dimensional de Sitter space is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere.

<span class="mw-page-title-main">Transverse Mercator projection</span> Adaptation of the standard Mercator projection

The transverse Mercator map projection is an adaptation of the standard Mercator projection. The transverse version is widely used in national and international mapping systems around the world, including the Universal Transverse Mercator. When paired with a suitable geodetic datum, the transverse Mercator delivers high accuracy in zones less than a few degrees in east-west extent.

<span class="mw-page-title-main">Pseudorapidity</span> Spatial coordinate used in experimental particle physics

In experimental particle physics, pseudorapidity, , is a commonly used spatial coordinate describing the angle of a particle relative to the beam axis. It is defined as

<span class="mw-page-title-main">Cassini projection</span> Cylindrical equidistant map projection

The Cassini projection is a map projection first described in an approximate form by César-François Cassini de Thury in 1745. Its precise formulas were found through later analysis by Johann Georg von Soldner around 1810. It is the transverse aspect of the equirectangular projection, in that the globe is first rotated so the central meridian becomes the "equator", and then the normal equirectangular projection is applied. Considering the earth as a sphere, the projection is composed of the operations:

In mathematics, prolate spheroidal wave functions are eigenfunctions of the Laplacian in prolate spheroidal coordinates, adapted to boundary conditions on certain ellipsoids of revolution. Related are the oblate spheroidal wave functions.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. It can also be related to the relativistic velocity addition formula.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

Transverse Mercator projection has many implementations. Louis Krüger in 1912 developed one of his two implementations that expressed as a power series in the longitude difference from the central meridian. These series were recalculated by Lee in 1946, by Redfearn in 1948, and by Thomas in 1952. They are often referred to as the Redfearn series, or the Thomas series. This implementation is of great importance since it is widely used in the U.S. State Plane Coordinate System, in national and also international mapping systems, including the Universal Transverse Mercator coordinate system (UTM). They are also incorporated into the Geotrans coordinate converter made available by the United States National Geospatial-Intelligence Agency. When paired with a suitable geodetic datum, the series deliver high accuracy in zones less than a few degrees in east-west extent.

The Bowring series of the transverse mercator published in 1989 by Bernard Russel Bowring gave formulas for the Transverse Mercator that are simpler to program but retain millimeter accuracy.

In applied mathematics, oblate spheroidal wave functions are involved in the solution of the Helmholtz equation in oblate spheroidal coordinates. When solving this equation, , by the method of separation of variables, , with:

<span class="mw-page-title-main">Trochoidal wave</span> Solution of Euler equations

In fluid dynamics, a trochoidal wave or Gerstner wave is an exact solution of the Euler equations for periodic surface gravity waves. It describes a progressive wave of permanent form on the surface of an incompressible fluid of infinite depth. The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863.

In image analysis, the generalized structure tensor (GST) is an extension of the Cartesian structure tensor to curvilinear coordinates. It is mainly used to detect and to represent the "direction" parameters of curves, just as the Cartesian structure tensor detects and represents the direction in Cartesian coordinates. Curve families generated by pairs of locally orthogonal functions have been the best studied.

Moffatt eddies are sequences of eddies that develop in corners bounded by plane walls due to an arbitrary disturbance acting at asymptotically large distances from the corner. Although the source of motion is the arbitrary disturbance at large distances, the eddies develop quite independently and thus solution of these eddies emerges from an eigenvalue problem, a self-similar solution of the second kind.

References

  1. "Universal Transverse Mercator (UTM)". PROJ coordinate transformation software library.[ permanent dead link ]
  2. Snyder, John P. (1987). Map projections: A working manual. U.S. Government Printing Office.
  3. Dracup, Josef F. "NOAA History - Surveying and Mapping - Geodetic Surveys 1940 - 1990". www.history.noaa.gov. Archived from the original on 2019-12-18.
  4. 1 2 Buchroithner, Manfred F.; Pfahlbusch, René. Geodetic grids in authoritative maps–new findings about the origin of the UTM Grid. Cartography and Geographic Information Science, 2016, doi:10.1080/15230406.2015.1128851.
  5. Equatorial radius 6,378,206.4 meters, polar radius 6,356,583.8 meters
  6. Equatorial radius 6,378,388 meters, reciprocal of the flattening 297 exactly
  7. "THE UNIVERSAL GRIDS: Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS)" (PDF). National_Geospatial-Intelligence_Agency. 1989-09-18. Archived (PDF) from the original on 2024-02-13. Retrieved 2024-02-13.
  8. "Military Map Reading 201" (PDF). National Geospatial-Intelligence Agency. 2002-05-29. Retrieved 2009-06-19.
  9. Krüger, Louis (1912). "Konforme Abbildung des Erdellipsoids in der Ebene". Deutsches GeoForschungsZentrum GFZ. doi:10.2312/GFZ.b103-krueger28.{{cite journal}}: Cite journal requires |journal= (help)
  10. Karney, Charles F. F. (2011). "Transverse Mercator with an accuracy of a few nanometers". Journal of Geodesy. 85 (8): 475–485. arXiv: 1002.1417 . Bibcode:2011JGeod..85..475K. doi:10.1007/s00190-011-0445-3. S2CID   118619524.
  11. Kawase, K. (2012): Concise Derivation of Extensive Coordinate Conversion Formulae in the Gauss-Krüger Projection, Bulletin of the Geospatial Information Authority of Japan, 60, pp 16
  12. Kawase, K. (2011): A General Formula for Calculating Meridian Arc Length and its Application to Coordinate Conversion in the Gauss-Krüger Projection, Bulletin of the Geospatial Information Authority of Japan, 59, 113

Further reading