Conformal map projection

Last updated

In cartography, a conformal map projection is one in which every angle between two curves that cross each other on Earth (a sphere or an ellipsoid) is preserved in the image of the projection; that is, the projection is a conformal map in the mathematical sense. For example, if two roads cross each other at a 39° angle, their images on a map with a conformal projection cross at a 39° angle.

Contents

Properties

A conformal projection can be defined as one that is locally conformal at every point on the map, albeit possibly with singular points where conformality fails. Thus, every small figure is nearly similar to its image on the map. The projection preserves the ratio of two lengths in the small domain. All of the projection's Tissot's indicatrices are circles.

Conformal projections preserve only small figures. Large figures are distorted by even conformal projections.

In a conformal projection, any small figure is similar to the image, but the ratio of similarity (scale) varies by location, which explains the distortion of the conformal projection.

In a conformal projection, parallels and meridians cross rectangularly on the map; but not all maps with this property are conformal. The counterexamples are equirectangular and equal-area cylindrical projections (of normal aspects). These projections expand meridian-wise and parallel-wise by different ratios respectively. Thus, parallels and meridians cross rectangularly on the map, but these projections do not preserve other angles; i.e. these projections are not conformal.

As proven by Leonhard Euler in 1775, a conformal map projection cannot be equal-area, nor can an equal-area map projection be conformal. [1] This is also a consequence of Carl Gauss's 1827 Theorema Egregium [Remarkable Theorem].

A conformal parameterization of a disc-like domain on the sphere is deemed scale-optimal when it minimizes the ratio of maximum to minimum scale across the entire map. This occurs by assigning a unit scale to the boundary of the disc. Chebyshev applied this theorem to create a conformal map for the European part of the Russian Empire, which reduced scale errors to 1/50. [2]

List of conformal projections

Applications

Large scale

Many large-scale maps use conformal projections because figures in large-scale maps can be regarded as small enough. The figures on the maps are nearly similar to their physical counterparts.

A non-conformal projection can be used in a limited domain such that the projection is locally conformal. Glueing many maps together restores roundness. To make a new sheet from many maps or to change the center, the body must be re-projected.

Seamless online maps can be very large Mercator projections, so that any place can become the map's center, then the map remains conformal. However, it is difficult to compare lengths or areas of two far-off figures using such a projection.

The Universal Transverse Mercator coordinate system and the Lambert system in France are projections that support the trade-off between seamlessness and scale variability.

For small scale

A contour chart of scale factors of GS50 projection GS-50 projection with lines of constant scale.svg
A contour chart of scale factors of GS50 projection

Maps reflecting directions, such as a nautical chart or an aeronautical chart, are projected by conformal projections. Maps treating values whose gradients are important, such as a weather map with atmospheric pressure, are also projected by conformal projections.

Small scale maps have large scale variations in a conformal projection, so recent world maps use other projections. Historically, many world maps are drawn by conformal projections, such as Mercator maps or hemisphere maps by stereographic projection.

Conformal maps containing large regions vary scales by locations, so it is difficult to compare lengths or areas. However, some techniques require that a length of 1 degree on a meridian = 111 km = 60 nautical miles. In non-conformal maps, such techniques are not available because the same lengths at a point vary the lengths on the map.

In Mercator or stereographic projections, scales vary by latitude, so bar scales by latitudes are often appended. In complex projections such as of oblique aspect. Contour charts of scale factors are sometimes appended.

See also

Notes

  1. ( Euler 1778 )
  2. Garanzha, Vladimir; Kaporin, Igor; Kudryavtseva, Liudmila; Protais, Francois; Sokolov, Dmitry (2024-02-29). "In the Quest for Scale-optimal Mappings". ACM Transactions on Graphics. 43 (1): 1–16. doi:10.1145/3627102. ISSN   0730-0301.
  3. "Miller Oblated Stereographic Projection".

Related Research Articles

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">Mercator projection</span> Cylindrical conformal map projection

The Mercator projection is a conformal cylindrical map projection presented by Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for navigation due to its ability to represent north as 'up' and south as 'down' everywhere while preserving local directions and shapes. However, as a result, the Mercator projection inflates the size of objects the further they are from the equator. In a Mercator projection, landmasses such as Greenland and Antarctica appear far larger than they actually are relative to landmasses near the equator. Despite these drawbacks, the Mercator projection is well-suited to marine navigation and internet web maps and continues to be widely used today.

<span class="mw-page-title-main">Map projection</span> Systematic representation of the surface of a sphere or ellipsoid onto a plane

In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography.

<span class="mw-page-title-main">Circle of latitude</span> Geographic notion

A circle of latitude or line of latitude on Earth is an abstract east–west small circle connecting all locations around Earth at a given latitude coordinate line.

<span class="mw-page-title-main">Stereographic projection</span> Particular mapping that projects a sphere onto a plane

In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere, onto a plane perpendicular to the diameter through the point. It is a smooth, bijective function from the entire sphere except the center of projection to the entire plane. It maps circles on the sphere to circles or lines on the plane, and is conformal, meaning that it preserves angles at which curves meet and thus locally approximately preserves shapes. It is neither isometric nor equiareal.

<span class="mw-page-title-main">Rhumb line</span> Arc crossing all meridians of longitude at the same angle

In navigation, a rhumb line, rhumb, or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant bearing as measured relative to true north.

In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form

<span class="mw-page-title-main">Transverse Mercator projection</span> Adaptation of the standard Mercator projection

The transverse Mercator map projection is an adaptation of the standard Mercator projection. The transverse version is widely used in national and international mapping systems around the world, including the Universal Transverse Mercator. When paired with a suitable geodetic datum, the transverse Mercator delivers high accuracy in zones less than a few degrees in east-west extent.

<span class="mw-page-title-main">Gnomonic projection</span> Projection of a sphere through its center onto a plane

A gnomonic projection, also known as a central projection or rectilinear projection, is a perspective projection of a sphere, with center of projection at the sphere's center, onto any plane not passing through the center, most commonly a tangent plane. Under gnomonic projection every great circle on the sphere is projected to a straight line in the plane. More generally, a gnomonic projection can be taken of any n-dimensional hypersphere onto a hyperplane.

<span class="mw-page-title-main">Scale (map)</span> Ratio of distance on a map to the corresponding distance on the ground

The scale of a map is the ratio of a distance on the map to the corresponding distance on the ground. This simple concept is complicated by the curvature of the Earth's surface, which forces scale to vary across a map. Because of this variation, the concept of scale becomes meaningful in two distinct ways.

<span class="mw-page-title-main">Oblique Mercator projection</span> Map projection

The oblique Mercator map projection is an adaptation of the standard Mercator projection. The oblique version is sometimes used in national mapping systems. When paired with a suitable geodetic datum, the oblique Mercator delivers high accuracy in zones less than a few degrees in arbitrary directional extent.

<span class="mw-page-title-main">Universal polar stereographic coordinate system</span>

The universal polar stereographic (UPS) coordinate system is used in conjunction with the universal transverse Mercator (UTM) coordinate system to locate positions on the surface of the Earth. Like the UTM coordinate system, the UPS coordinate system uses a metric-based cartesian grid laid out on a conformally projected surface. UPS covers the Earth's polar regions, specifically the areas north of 84°N and south of 80°S, which are not covered by the UTM grids, plus an additional 30 minutes of latitude extending into UTM grid to provide some overlap between the two systems.

<span class="mw-page-title-main">Tissot's indicatrix</span> Characterization of distortion in map projections

In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences.

<span class="mw-page-title-main">Space-oblique Mercator projection</span> Map projection

Space-oblique Mercator projection is a map projection devised in the 1970s for preparing maps from Earth-survey satellite data. It is a generalization of the oblique Mercator projection that incorporates the time evolution of a given satellite ground track to optimize its representation on the map. The oblique Mercator projection, on the other hand, optimizes for a given geodesic.

<span class="mw-page-title-main">Peirce quincuncial projection</span> Conformal map projection

The Peirce quincuncial projection is the conformal map projection from the sphere to an unfolded square dihedron, developed by Charles Sanders Peirce in 1879. Each octant projects onto an isosceles right triangle, and these are arranged into a square. The name quincuncial refers to this arrangement: the north pole at the center and quarters of the south pole in the corners form a quincunx pattern like the pips on the five face of a traditional die. The projection has the distinctive property that it forms a seamless square tiling of the plane, conformal except at four singular points along the equator.

<span class="mw-page-title-main">Guyou hemisphere-in-a-square projection</span> Conformal map projection

The Guyou hemisphere-in-a-square projection is a conformal map projection for the hemisphere. It is an oblique aspect of the Peirce quincuncial projection.

<span class="mw-page-title-main">Stereographic map projection</span> Type of conformal map projection

The stereographic projection, also known as the planisphere projection or the azimuthal conformal projection, is a conformal map projection whose use dates back to antiquity. Like the orthographic projection and gnomonic projection, the stereographic projection is an azimuthal projection, and when on a sphere, also a perspective projection.

<span class="mw-page-title-main">Spherical conic</span> Curve on the sphere analogous to an ellipse or hyperbola

In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of whose great-circle distances to two foci is constant. By taking the antipodal point to one focus, every spherical ellipse is also a spherical hyperbola, and vice versa. As a space curve, a spherical conic is a quartic, though its orthogonal projections in three principal axes are planar conics. Like planar conics, spherical conics also satisfy a "reflection property": the great-circle arcs from the two foci to any point on the conic have the tangent and normal to the conic at that point as their angle bisectors.

References

Further reading