WikiMili The Free Encyclopedia

The **Chamberlin trimetric projection** is a map projection where three points are fixed on the globe and the points on the sphere are mapped onto a plane by triangulation. It was developed in 1946 by Wellman Chamberlin for the National Geographic Society.^{ [1] } Chamberlin was chief cartographer for the Society from 1964 to 1971.^{ [2] } The projection's principal feature is that it compromises between distortions of area, direction, and distance. A Chamberlin trimetric map therefore gives an excellent overall sense of the region being mapped.^{ [3] } Many National Geographic Society maps of single continents use this projection.^{ [2] }

A **map projection** is a systematic transformation of the latitudes and longitudes of locations from the surface of a sphere or an ellipsoid into locations on a plane. Maps cannot be created without map projections. All map projections necessarily distort the surface in some fashion. Depending on the purpose of the map, some distortions are acceptable and others are not; therefore, different map projections exist in order to preserve some properties of the sphere-like body at the expense of other properties. There is no limit to the number of possible map projections.

A **globe** is a spherical model of Earth, of some other celestial body, or of the celestial sphere. Globes serve similar purposes to maps, but unlike maps, do not distort the surface that they portray except to scale it down. A globe of Earth is called a *terrestrial globe*. A globe of the celestial sphere is called a *celestial globe*.

A **sphere** is a perfectly round geometrical object in three-dimensional space that is the surface of a completely round ball.

As originally implemented, the projection algorithm begins with the selection of three points near the outer boundary of the area to be mapped. From these three base points, the true distances to a point on the mapping area are calculated. The distances from each of the three base points are then drawn on the plane by compass circles. Unlike triangulation on a plane where three such compass circles will intersect at a unique point, the compass circles from a sphere do not intersect precisely at a point. A small triangle is generated from the intersections, and the center of this triangle is calculated as the mapped point.^{ [1] }

In mathematics and computer science, an **algorithm** is an unambiguous specification of how to solve a class of problems. Algorithms can perform calculation, data processing, automated reasoning, and other tasks.

A Chamberlin trimetric projection map was originally obtained by graphically mapping points at regular intervals of latitude and longitude, with shorelines and other features then mapped by interpolation. Based on the principles of the projection, precise, but lengthy, mathematical formulas were later developed for calculating this projection by computer for a spherical earth.^{ [2] }^{ [3] }^{ [4] }

In geography, **latitude** is a geographic coordinate that specifies the north–south position of a point on the Earth's surface. Latitude is an angle which ranges from 0° at the Equator to 90° at the poles. Lines of constant latitude, or *parallels*, run east–west as circles parallel to the equator. Latitude is used together with longitude to specify the precise location of features on the surface of the Earth. On its own, the term latitude should be taken to be the *geodetic latitude* as defined below. Briefly, geodetic latitude at a point is the angle formed by the vector perpendicular to the ellipsoidal surface from that point, and the equatorial plane. Also defined are six *auxiliary latitudes* which are used in special applications.

**Longitude**, is a geographic coordinate that specifies the east–west position of a point on the Earth's surface. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Meridians connect points with the same longitude. By convention, one of these, the Prime Meridian, which passes through the Royal Observatory, Greenwich, England, was allocated the position of 0° longitude. The longitude of other places is measured as the angle east or west from the Prime Meridian, ranging from 0° at the Prime Meridian to +180° eastward and −180° westward. Specifically, it is the angle between a plane through the Prime Meridian and a plane through both poles and the location in question.

A **computer** is a device that can be instructed to carry out sequences of arithmetic or logical operations automatically via computer programming. Modern computers have the ability to follow generalized sets of operations, called *programs.* These programs enable computers to perform an extremely wide range of tasks. A "complete" computer including the hardware, the operating system, and peripheral equipment required and used for "full" operation can be referred to as a **computer system**. This term may as well be used for a group of computers that are connected and work together, in particular a computer network or computer cluster.

The Chamberlin trimetric projection is neither conformal nor equal-area. Rather, the projection was conceived to minimize distortion of distances everywhere with the side-effect of balancing between areal equivalence and conformality.^{ [3] } This projection is not appropriate for mapping the entire sphere because the outer boundary would loop and overlap itself in most configurations.

The **Gall–Peters projection** is a rectangular map projection that maps all areas such that they have the correct sizes relative to each other. Like any equal-area projection, it achieves this goal by distorting most shapes. The projection is a particular example of the cylindrical equal-area projection with latitudes 45° north and south as the regions on the map that have no distortion.

The **Mercator projection** is a cylindrical map projection presented by the Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for nautical navigation because of its ability to represent lines of constant course, known as rhumb lines or loxodromes, as straight segments that conserve the angles with the meridians. Although the linear scale is equal in all directions around any point, thus preserving the angles and the shapes of small objects, the Mercator projection distorts the size of objects as the latitude increases from the Equator to the poles, where the scale becomes infinite. So, for example, landmasses such as Greenland and Antarctica appear much larger than they actually are, relative to landmasses near the equator such as Central Africa.

In geometry, the **stereographic projection** is a particular mapping (function) that projects a sphere onto a plane. The projection is defined on the entire sphere, except at one point: the projection point. Where it is defined, the mapping is smooth and bijective. It is conformal, meaning that it preserves angles at which curves meet. It is neither isometric nor area-preserving: that is, it preserves neither distances nor the areas of figures.

In geometry, **inversive geometry** is the study of those properties of figures that are preserved by a generalization of a type of transformation of the Euclidean plane, called *inversion*. These transformations preserve angles and map generalized circles into generalized circles, where a *generalized circle* means either a circle or a line. Many difficult problems in geometry become much more tractable when an inversion is applied.

A **gnomonic map projection** displays all great circles as straight lines, resulting in any straight line segment on a gnomonic map showing a geodesic, the shortest route between the segment's two endpoints. This is achieved by casting surface points of the sphere onto a tangent plane, each landing where a ray from the center of the sphere passes through the point on the surface and then on to the plane. No distortion occurs at the tangent point, but distortion increases rapidly away from it. Less than half of the sphere can be projected onto a finite map. Consequently, a rectilinear photographic lens, which is based on the gnomonic principle, cannot image more than 180 degrees.

**Nicolas Auguste Tissot** was a 19th-century French cartographer, who in 1859 and 1881 published an analysis of the distortion that occurs on map projections. He devised Tissot's indicatrix, or *distortion circle*, which when plotted on a map will appear as an ellipse whose elongation depends on the amount of distortion by the map at that point. The angle and extent of the elongation represents the amount of angular distortion of the map. The size of the ellipse indicates the amount that the area is distorted.

The **scale** of a map is the ratio of a distance on the map to the corresponding distance on the ground. This simple concept is complicated by the curvature of the Earth's surface, which forces scale to vary across a map. Because of this variation, the concept of scale becomes meaningful in two distinct ways. The first way is the ratio of the size of the **generating globe** to the size of the Earth. The generating globe is a conceptual model to which the Earth is shrunk and from which the map is projected.

The **equirectangular projection** is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100. The projection maps meridians to vertical straight lines of constant spacing, and circles of latitude to horizontal straight lines of constant spacing. The projection is neither equal area nor conformal. Because of the distortions introduced by this projection, it has little use in navigation or cadastral mapping and finds its main use in thematic mapping. In particular, the plate carrée has become a standard for global raster datasets, such as Celestia and NASA World Wind, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth.

In cartography, a **Tissot's indicatrix** is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

The **Lambert azimuthal equal-area projection** is a particular mapping from a sphere to a disk. It accurately represents area in all regions of the sphere, but it does not accurately represent angles. It is named for the Swiss mathematician Johann Heinrich Lambert, who announced it in 1772. "Zenithal" being synonymous with "azimuthal", the projection is also known as the **Lambert zenithal equal-area projection**.

The **Peirce quincuncial projection** is a conformal map projection developed by Charles Sanders Peirce in 1879. The projection has the distinctive property that it can be tiled *ad infinitum* on the plane, with edge-crossings being completely smooth except for four singular points per tile. The projection has seen use in digital photography for portraying 360° views. The description *quincuncial* refers to the arrangement of four quadrants of the globe around the center hemisphere in an overall square pattern. Typically the projection is oriented such that the north pole lies at the center.

The **two-point equidistant projection** is a map projection first described by Hans Maurer in 1919. It is a generalization of the much simpler azimuthal equidistant projection. In this two-point form, two locus points are chosen by the mapmaker to configure the projection. Distances from the two loci to any other point on the map are correct: that is, they scale to the distances of the same points on the sphere.

In cartography, the **cylindrical equal-area projection** is a family of cylindrical, equal-area map projections.

In geometry, **inversion in a sphere** is a transformation of Euclidean space that fixes the points of a sphere while sending the points inside of the sphere to the outside of the sphere, and vice versa. Intuitively, it "swaps the inside and outside" of the sphere while leaving the points on the sphere unchanged. Inversion is a conformal transformation, and is the basic operation of inversive geometry.

In surveying, **triangulation** is the process of determining the location of a point by measuring only angles to it from known points at either end of a fixed baseline, rather than measuring distances to the point directly as in trilateration. The point can then be fixed as the third point of a triangle with one known side and two known angles.

- 1 2 Chamberlin, Wellman (1947).
*The Round Earth on Flat Paper: Map Projections Used by Cartographers*. Washington, D.C.: National Geographic Society. ASIN B000WTCPXE. - 1 2 3 Snyder, John P. (1997).
*Flattening the earth: two thousand years of map projections*. University of Chicago Press. ISBN 978-0-226-76747-5. - 1 2 3 Christensen, Albert H.J. (1992). "The Chamberlin Trimetric Projection".
**19**(2). Cartography and Geographic Information Science. pp. 88–100. Retrieved 2009-12-19. - ↑ Bretterbauer, Kurt (1989). "Die trimetrische Projektion von W. Chamberlin".
**39**(2). Kartographische Nachrichten. pp. 51–55.

- The Chamberlin Trimetric Projection - Implementations of the projection using Matlab scripts.
- The Chamberlin Trimetric Projection - Notes on the projection from a cartography class at Colorado State University.

**Cartography** is the study and practice of making maps. Combining science, aesthetics, and technique, cartography builds on the premise that reality can be modeled in ways that communicate spatial information effectively.

**Colorado State University** is a public research university in Fort Collins, Colorado. The university is the state's land grant university and the flagship university of the Colorado State University System.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.