A **Lambert conformal conic projection** (**LCC**) is a conic map projection used for aeronautical charts, portions of the State Plane Coordinate System, and many national and regional mapping systems. It is one of seven projections introduced by Johann Heinrich Lambert in his 1772 publication *Anmerkungen und Zusätze zur Entwerfung der Land- und Himmelscharten* (Notes and Comments on the Composition of Terrestrial and Celestial Maps^{ [1] }).

Conceptually, the projection seats a cone over the sphere of the Earth and projects the surface conformally onto the cone. The cone is unrolled, and the parallel that was touching the sphere is assigned unit scale. That parallel is called the *reference parallel* or *standard parallel*.

By scaling the resulting map, two parallels can be assigned unit scale, with scale decreasing between the two parallels and increasing outside them. This gives the map two standard parallels. In this way, deviation from unit scale can be minimized within a region of interest that lies largely between the two standard parallels. Unlike other conic projections, no true secant form of the projection exists because using a secant cone does not yield the same scale along both standard parallels.^{ [2] }

Pilots use aeronautical charts based on LCC because a straight line drawn on a Lambert conformal conic projection approximates a great-circle route between endpoints for typical flight distances. The US systems of VFR (visual flight rules) sectional charts and terminal area charts are drafted on the LCC with standard parallels at 33°N and 45°N.

The European Environment Agency ^{ [3] } and the INSPIRE specification for coordinate systems ^{ [4] } recommends using this projection (also named ETRS89-LCC) for conformal pan-European mapping at scales smaller or equal to 1:500,000. In Metropolitan France, the official projection is Lambert-93,^{ [5] } a Lambert conic projection using RGF93 geodetic system^{ [6] } and defined by references parallels that are 44°N and 49°N.

The National Spatial Framework for India uses Datum WGS84 with a LCC projection and is a recommended NNRMS standard. Each state has its own set of reference parameters given in the standard.^{ [7] }

The U.S. National Geodetic Survey's "State Plane Coordinate System of 1983" uses the Lambert conformal conic projection to define the grid-coordinate systems used in several states, primarily those that are elongated west to east such as Tennessee. The Lambert projection is relatively easy to use: conversions from geodetic (latitude/longitude) to State Plane Grid coordinates involve trigonometric equations that are fairly straightforward and which can be solved on most scientific calculators, especially programmable models.^{ [8] } The projection as used in CCS83 yields maps in which scale errors are limited to 1 part in 10,000.

The Lambert conformal conic is one of several map projection systems developed by Johann Heinrich Lambert, an 18th-century Swiss mathematician, physicist, philosopher, and astronomer.^{ [1] }

Coordinates from a spherical datum can be transformed into Lambert conformal conic projection coordinates with the following formulas,^{ [9] } where *λ* is the longitude, *λ*_{0} the reference longitude, *φ* the latitude, *φ*_{0} the reference latitude, and *φ*_{1} and *φ*_{2} the standard parallels:

where

Formulae for ellipsoidal datums are more involved.^{ [10] }

If one standard parallel is used (i.e. *φ*_{1} = *φ*_{2}), the formula for *n* above is indeterminate, but then *n* = sin(*φ*_{1}).^{ [10] }

The **Mercator projection** is a cylindrical map projection presented by Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for navigation because of its unique property of representing any course of constant bearing as a straight segment. Such a course, known as a rhumb or, mathematically, a loxodrome, is preferred by navigators because the ship can sail in a constant compass direction to reach its destination, eliminating difficult and error-prone course corrections. Linear scale is constant on the Mercator in every direction around any point, thus preserving the angles and the shapes of small objects and fulfilling the conditions of a conformal map projection. As a side effect, the Mercator projection inflates the size of objects away from the equator. This inflation starts infinitesimally, but accelerates with latitude to become infinite at the poles. So, for example, landmasses such as Greenland and Antarctica appear far larger than they actually are relative to landmasses near the equator, such as Central Africa.

In mathematics, a **spherical coordinate system** is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the *radial distance* of that point from a fixed origin, its *polar angle* measured from a fixed zenith direction, and the *azimuthal angle* of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen as the three-dimensional version of the polar coordinate system.

A **cylindrical coordinate system** is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis, the direction from the axis relative to a chosen reference direction, and the distance from a chosen reference plane perpendicular to the axis. The latter distance is given as a positive or negative number depending on which side of the reference plane faces the point.

The **transverse Mercator** map projection is an adaptation of the standard Mercator projection. The transverse version is widely used in national and international mapping systems around the world, including the UTM. When paired with a suitable geodetic datum, the transverse Mercator delivers high accuracy in zones less than a few degrees in east-west extent.

A **cardioid** is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion.

The use of **orthographic projection in cartography** dates back to antiquity. Like the stereographic projection and gnomonic projection, orthographic projection is a perspective projection, in which the sphere is projected onto a tangent plane or secant plane. The *point of perspective* for the orthographic projection is at infinite distance. It depicts a hemisphere of the globe as it appears from outer space, where the horizon is a great circle. The shapes and areas are distorted, particularly near the edges.

The **azimuthal equidistant projection** is an azimuthal map projection. It has the useful properties that all points on the map are at proportionally correct distances from the center point, and that all points on the map are at the correct azimuth (direction) from the center point. A useful application for this type of projection is a polar projection which shows all meridians as straight, with distances from the pole represented correctly. The flag of the United Nations contains an example of a polar azimuthal equidistant projection.

The **scale** of a map is the ratio of a distance on the map to the corresponding distance on the ground. This simple concept is complicated by the curvature of the Earth's surface, which forces scale to vary across a map. Because of this variation, the concept of scale becomes meaningful in two distinct ways.

The **equirectangular projection** is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100. The projection maps meridians to vertical straight lines of constant spacing, and circles of latitude to horizontal straight lines of constant spacing. The projection is neither equal area nor conformal. Because of the distortions introduced by this projection, it has little use in navigation or cadastral mapping and finds its main use in thematic mapping. In particular, the plate carrée has become a standard for global raster datasets, such as Celestia and NASA World Wind, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth.

The **Bonne projection** is a pseudoconical equal-area map projection, sometimes called a **dépôt de la guerre**, **modified Flamsteed**, or a **Sylvanus** projection. Although named after Rigobert Bonne (1727–1795), the projection was in use prior to his birth, in 1511 by Sylvano, Honter in 1561, De l'Isle before 1700 and Coronelli in 1696. Both Sylvano and Honter’s usages were approximate, however, and it is not clear they intended to be the same projection.

The **Bottomley map projection** is an equal area map projection defined as:

In cartography, a **Tissot's indicatrix** is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

The **Albers equal-area conic projection**, or **Albers projection**, is a conic, equal area map projection that uses two standard parallels. Although scale and shape are not preserved, distortion is minimal between the standard parallels.

**Space-oblique Mercator projection** is a map projection devised in the 1970s for preparing maps from Earth-survey satellite data. It is a generalization of the oblique Mercator projection that incorporates the time evolution of a given satellite ground track to optimize its representation on the map. The oblique Mercator projection, on the other hand, optimizes for a given geodesic.

The **Winkel tripel projection**, a modified azimuthal map projection of the world, is one of three projections proposed by German cartographer Oswald Winkel in 1921. The projection is the arithmetic mean of the equirectangular projection and the Aitoff projection: The name *tripel* refers to Winkel's goal of minimizing three kinds of distortion: area, direction, and distance.

The **Hammer projection** is an equal-area map projection described by Ernst Hammer in 1892. Using the same 2:1 elliptical outer shape as the Mollweide projection, Hammer intended to reduce distortion in the regions of the outer meridians, where it is extreme in the Mollweide.

In cartography, the **cylindrical equal-area projection** is a family of cylindrical, equal-area map projections.

The **American polyconic** map projection is a map projection used for maps of the United States and regions of the United States beginning early in the 19th century. It belongs to the polyconic projection class, which consists of map projections whose parallels are non-concentric circular arcs except for the equator, which is straight. Often the American polyconic is simply called the **polyconic projection**.

The **rectangular polyconic** projection is a map projection was first mentioned in 1853 by the U.S. Coast Survey, where it was developed and used for portions of the U.S. exceeding about one square degree. It belongs to the polyconic projection class, which consists of map projections whose parallels are non-concentric circular arcs except for the equator, which is straight. Sometimes the rectangular polyconic is called the **War Office** projection due to its use by the British War Office for topographic maps. It is not used much these days, with practically all military grid systems having moved onto conformal projection systems, typically modeled on the transverse Mercator projection.

The **Eckert-Greifendorff projection** is an equal-area map projection described by Max Eckert-Greifendorff in 1935. Unlike his previous six projections, It is not pseudocylindrical.

- 1 2 Lambert, Johann Heinrich (1772). Tobler, Waldo (ed.).
*Notes and Comments on the Composition of Terrestrial and Celestial Maps (Translated and Introduced by W. R. Tobler, 1972)*. ESRI Press. ISBN 978-1-58948-281-4. - ↑ "CMAPF FAQ". NOAA. Archived from the original on 2012-09-08. Retrieved 2011-12-28.
- ↑ "Short Proceedings of the 1st European Workshop on Reference Grids, Ispra, 27-29 October 2003" (PDF). European Environment Agency. 2004-06-14. p. 6. Retrieved 2009-08-27.
- ↑ "D2.8.I.1 INSPIRE Specification on Coordinate Reference Systems - Guidelines" (PDF). European Commission. 2009-09-07. p. 15. Retrieved 2012-10-07.
- ↑ http://spatialreference.org/ref/epsg/rgf93-lambert-93/
- ↑ http://georepository.com/crs_4964/RGF93.html
- ↑ "NNRMS standards, Government of India" (PDF). Government of India. Archived from the original (PDF) on 2016-03-08.
- ↑ "State Plane Coordinate System of 1983, NOAA Manual NOS NGS 5" (PDF). National Oceanic and Atmospheric Administration. March 1990. Retrieved 2011-10-27.
- ↑ Weisstein, Eric. "Lambert Conformal Conic Projection".
*Wolfram MathWorld*. Wolfram Research. Retrieved 2009-02-07. - 1 2 Snyder, John (1987). "Map Projections:A Working Manual (USGS Professional Paper: 1395)". USGS. pp. 107–109. Retrieved 2014-07-12.

Wikimedia Commons has media related to . Lambert conformal conic projection |

- Table of examples and properties of all common projections, from radicalcartography.net
- An interactive Java Applet to study the metric deformations of the Lambert Conformal Conic Projection
- This document from the U.S. National Geodetic Survey describes the State Plane Coordinate System of 1983, including details on the equations used to perform the Lambert Conformal Conic and Mercator map projections of CCS83
- Lambert Conformal Conic to Geographic Transformation Formulae from Land Information New Zealand

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.