General Perspective projection

Last updated
Vertical perspective from an altitude of 35,786 km over (0deg, 90degW), corresponding to a view from geostationary orbit. 10deg graticule. Vertical perspective SW.jpg
Vertical perspective from an altitude of 35,786 km over (0°, 90°W), corresponding to a view from geostationary orbit. 10° graticule.
The vertical perspective projection showing exactly one third of the Earth's surface, with Tissot's indicatrix of deformation. Perspective with Tissot's Indicatrices of Distortion.svg
The vertical perspective projection showing exactly one third of the Earth's surface, with Tissot's indicatrix of deformation.

The General Perspective projection is a map projection. When the Earth is photographed from space, the camera records the view as a perspective projection. When the camera is aimed toward the center of the Earth, the resulting projection is called Vertical Perspective. When aimed in other directions, the resulting projection is called a Tilted Perspective.

Contents

Perspective and usage

The Vertical Perspective is related to the stereographic projection, gnomonic projection, and orthographic projection. These are all true perspective projections, meaning that they result from viewing the globe from some vantage point. They are also azimuthal projections, meaning that the projection surface is a plane tangent to the sphere. This results in correct directions from the center to all other points. The point of perspective, or vantage point, for the General Perspective Projection is at a finite distance. It depicts the earth as it appears from some relatively short distance above the surface, typically a few hundred to a few tens of thousands of kilometers.

When tilted, the General Perspective projection, also called the tilted perspective projection, is not azimuthal (see second figure below); directions are not true from the central point, and the projection plane is not tangent to the sphere. [1] Tilted perspectives are common from aerial and low orbit photography, generally taken from at a height measured in kilometers to hundreds of kilometers, rather than the hundreds or thousands of kilometers typical of a vertical perspective. However, Richard Edes Harrison pioneered the use of this projection on strategic maps showing military theaters during WWII. Some prominent Internet mapping tools also use the tilted perspective projection. For example, Google Earth and NASA World Wind show the globe as it appears from space. These applications permit a wide variety of interactive pan and zoom operations, including fly-through simulations, mimicking pictures or movies taken with a hand-held camera from an airplane or spacecraft.

History

Some forms of the projection were known to the Greeks and Egyptians 2,000 years ago. It was studied by several French and British scientists in the 18th and 19th centuries. However, the projection had little practical value at that time; computationally simpler nonperspective azimuthal projections could be used instead.

Space exploration led to a renewed interest in the perspective projection. Now the concern was for a pictorial view from space, not for minimal distortion. A picture taken with a hand-held camera from the window of a spacecraft has a tilted vertical perspective, so the crewed Gemini and Apollo space missions sparked interest in this projection.

Mathematics

The formulas for the general perspective projection are derived using trigonometry. They are written in terms of longitude (λ) and latitude (φ) on the sphere. Define the radius of the sphere R and the center point (and origin) of the projection (λ0, φ0). The equations for the orthographic projection onto the (x, y) tangent plane reduce to the following: [2]

where

is the angular distance and denotes the distance from the perspective point to the center of earth. It is positive in the direction of the center of the projection (for the “view from space”) and negative in the opposite direction. For the stereographic projection, , and for the gnomonic projection, .

The inverse formulas are given by:

where

If is negative and is greater than , must be subtracted from 180° to place it in the proper quadrant. For computation of the inverse formulas the use of the two-argument atan2 form of the inverse tangent function (as opposed to atan) is recommended. This ensures that the sign of the orthographic projection as written is correct in all quadrants.

Comparison azimuthal projections.svg
Comparison of the General Perspective projection and some azimuthal projections centred on 90° N at the same scale, ordered by projection altitude in Earth radii. (click for detail)
Geometric projection of the parallels of the polar Perspective projections, Vertical and Tilted. Gvp diagram.jpg
Geometric projection of the parallels of the polar Perspective projections, Vertical and Tilted.

See also

Related Research Articles

<span class="mw-page-title-main">Spherical coordinate system</span> 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin; its polar angle measured from a fixed polar axis or zenith direction; and the azimuthal angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the fixed axis, measured from another fixed reference direction on that plane. When radius is fixed, the two angular coordinates make a coordinate system on the sphere sometimes called spherical polar coordinates.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Cylindrical coordinate system</span> 3-dimensional coordinate system

A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis (axis L in the image opposite), the direction from the axis relative to a chosen reference direction (axis A), and the distance from a chosen reference plane perpendicular to the axis (plane containing the purple section). The latter distance is given as a positive or negative number depending on which side of the reference plane faces the point.

<span class="mw-page-title-main">Rhumb line</span> Arc crossing all meridians of longitude at the same angle

In navigation, a rhumb line, rhumb, or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant bearing as measured relative to true north.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.

<span class="mw-page-title-main">Orthographic map projection</span> Azimuthal perspective map projection

Orthographic projection in cartography has been used since antiquity. Like the stereographic projection and gnomonic projection, orthographic projection is a perspective projection in which the sphere is projected onto a tangent plane or secant plane. The point of perspective for the orthographic projection is at infinite distance. It depicts a hemisphere of the globe as it appears from outer space, where the horizon is a great circle. The shapes and areas are distorted, particularly near the edges.

<span class="mw-page-title-main">Azimuthal equidistant projection</span> Azimuthal equidistant map projection

The azimuthal equidistant projection is an azimuthal map projection. It has the useful properties that all points on the map are at proportionally correct distances from the center point, and that all points on the map are at the correct azimuth (direction) from the center point. A useful application for this type of projection is a polar projection which shows all meridians as straight, with distances from the pole represented correctly. The flag of the United Nations contains an example of a polar azimuthal equidistant projection.

<span class="mw-page-title-main">Bonne projection</span>

The Bonne projection is a pseudoconical equal-area map projection, sometimes called a dépôt de la guerre, modified Flamsteed, or a Sylvanus projection. Although named after Rigobert Bonne (1727–1795), the projection was in use prior to his birth, in 1511 by Sylvanus, Honter in 1561, De l'Isle before 1700 and Coronelli in 1696. Both Sylvanus and Honter's usages were approximate, however, and it is not clear they intended to be the same projection.

<span class="mw-page-title-main">Bottomley projection</span> Pseudoconical equal-area map projection

The Bottomley map projection is a pseudoconical equal area map projection defined as:

<span class="mw-page-title-main">Tissot's indicatrix</span> Characterization of distortion in map protections

In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

<span class="mw-page-title-main">Lambert conformal conic projection</span> Conic conformal map projection

A Lambert conformal conic projection (LCC) is a conic map projection used for aeronautical charts, portions of the State Plane Coordinate System, and many national and regional mapping systems. It is one of seven projections introduced by Johann Heinrich Lambert in his 1772 publication Anmerkungen und Zusätze zur Entwerfung der Land- und Himmelscharten.

<span class="mw-page-title-main">Albers projection</span> Conic equal-area map projection

The Albers equal-area conic projection, or Albers projection, is a conic, equal area map projection that uses two standard parallels. Although scale and shape are not preserved, distortion is minimal between the standard parallels.

<span class="mw-page-title-main">Hammer projection</span> Pseudoazimuthal equal-area map projection

The Hammer projection is an equal-area map projection described by Ernst Hammer in 1892. Using the same 2:1 elliptical outer shape as the Mollweide projection, Hammer intended to reduce distortion in the regions of the outer meridians, where it is extreme in the Mollweide.

<span class="mw-page-title-main">Cassini projection</span> Cylindrical equidistant map projection

The Cassini projection is a map projection described by César-François Cassini de Thury in 1745. It is the transverse aspect of the equirectangular projection, in that the globe is first rotated so the central meridian becomes the "equator", and then the normal equirectangular projection is applied. Considering the earth as a sphere, the projection is composed of the operations:

<span class="mw-page-title-main">Equidistant conic projection</span> Conic equidistant map projection

The equidistant conic projection is a conic map projection commonly used for maps of small countries as well as for larger regions such as the continental United States that are elongated east-to-west.

<span class="mw-page-title-main">Eckert IV projection</span> Pseudocylindrical equal-area map projection

The Eckert IV projection is an equal-area pseudocylindrical map projection. The length of the polar lines is half that of the equator, and lines of longitude are semiellipses, or portions of ellipses. It was first described by Max Eckert in 1906 as one of a series of three pairs of pseudocylindrical projections. Within each pair, meridians are the same whereas parallels differ. Odd-numbered projections have parallels spaced equally, whereas even-numbered projections have parallels spaced to preserve area. Eckert IV is paired with Eckert III.

<span class="mw-page-title-main">Strebe 1995 projection</span> Pseudoazimuthal equal-area map projection

The Strebe 1995 projection, Strebe projection, Strebe lenticular equal-area projection, or Strebe equal-area polyconic projection is an equal-area map projection presented by Daniel "daan" Strebe in 1994. Strebe designed the projection to keep all areas proportionally correct in size; to push as much of the inevitable distortion as feasible away from the continental masses and into the Pacific Ocean; to keep a familiar equatorial orientation; and to do all this without slicing up the map.

The Eckert-Greifendorff projection is an equal-area map projection described by Max Eckert-Greifendorff in 1935. Unlike his previous six projections, it is not pseudocylindrical.

<span class="mw-page-title-main">Equal-area projection</span> Type of map projection

In cartography, an equivalent, authalic, or equal-area projection is a map projection that preserves relative area measure between any and all map regions. Equivalent projections are widely used for thematic maps showing scenario distribution such as population, farmland distribution, forested areas, and so forth, because an equal-area map does not change apparent density of the phenomenon being mapped.

References

  1. PROJ contributors (2020). PROJ coordinate transformation software library. Open Source Geospatial Foundation. "Tilted perspective".
  2. Snyder, J. P. (1987). Map Projections—A Working Manual (US Geologic Survey Professional Paper 1395). Washington, D.C.: US Government Printing Office. pp. 169–181.