The **Lambert azimuthal equal-area projection** is a particular mapping from a sphere to a disk. It accurately represents area in all regions of the sphere, but it does not accurately represent angles. It is named for the Swiss mathematician Johann Heinrich Lambert, who announced it in 1772.^{ [1] } "Zenithal" being synonymous with "azimuthal", the projection is also known as the **Lambert zenithal equal-area projection**.^{ [2] }

- Definition
- Properties
- Applications
- Animated Lambert projection
- See also
- References
- Sources
- External links

The Lambert azimuthal projection is used as a map projection in cartography. For example, the National Atlas of the US uses a Lambert azimuthal equal-area projection to display information in the online Map Maker application,^{ [3] } and the European Environment Agency recommends its usage for European mapping for statistical analysis and display.^{ [4] } It is also used in scientific disciplines such as geology for plotting the orientations of lines in three-dimensional space. This plotting is aided by a special kind of graph paper called a ** Schmidt net **.^{ [5] }

To define the Lambert azimuthal projection, imagine a plane set tangent to the sphere at some point *S* on the sphere. Let *P* be any point on the sphere other than the antipode of *S*. Let *d* be the distance between *S* and *P* in three-dimensional space (*not* the distance along the sphere surface). Then the projection sends *P* to a point *P′* on the plane that is a distance *d* from *S*.

To make this more precise, there is a unique circle centered at *S*, passing through *P*, and perpendicular to the plane. It intersects the plane in two points; let *P*′ be the one that is closer to *P*. This is the projected point. See the figure. The antipode of *S* is excluded from the projection because the required circle is not unique. The case of *S* is degenerate; *S* is projected to itself, along a circle of radius 0.^{ [6] }

Explicit formulas are required for carrying out the projection on a computer. Consider the projection centered at *S* = (0, 0, −1) on the unit sphere, which is the set of points (*x*, *y*, *z*) in three-dimensional space **R**^{3} such that *x*^{2} + *y*^{2} + *z*^{2} = 1. In Cartesian coordinates (*x*, *y*, *z*) on the sphere and (*X*, *Y*) on the plane, the projection and its inverse are then described by

In spherical coordinates (*φ*, *θ*) on the sphere (with *φ* the zenith and *θ* the azimuth) and polar coordinates (*R*, *Θ*) on the disk, the map and its inverse are given by ^{ [6] }

In cylindrical coordinates (*r*, *θ*, *z*) on the sphere and polar coordinates (*R*, *Θ*) on the plane, the map and its inverse are given by

The projection can be centered at other points, and defined on spheres of radius other than 1, using similar formulas.^{ [7] }

As defined in the preceding section, the Lambert azimuthal projection of the unit sphere is undefined at (0, 0, 1). It sends the rest of the sphere to the open disk of radius 2 centered at the origin (0, 0) in the plane. It sends the point (0, 0, −1) to (0, 0), the equator *z* = 0 to the circle of radius √2 centered at (0, 0), and the lower hemisphere *z* < 0 to the open disk contained in that circle.

The projection is a diffeomorphism (a bijection that is infinitely differentiable in both directions) between the sphere (minus (0, 0, 1)) and the open disk of radius 2. It is an area-preserving (equal-area) map, which can be seen by computing the area element of the sphere when parametrized by the inverse of the projection. In Cartesian coordinates it is

This means that measuring the area of a region on the sphere is tantamount to measuring the area of the corresponding region on the disk.

On the other hand, the projection does not preserve angular relationships among curves on the sphere. No mapping between a portion of a sphere and the plane can preserve both angles and areas. (If one did, then it would be a local isometry and would preserve Gaussian curvature; but the sphere and disk have different curvatures, so this is impossible.) This fact, that flat pictures cannot perfectly represent regions of spheres, is the fundamental problem of cartography.

As a consequence, regions on the sphere may be projected to the plane with greatly distorted shapes. This distortion is particularly dramatic far away from the center of the projection (0, 0, −1). In practice the projection is often restricted to the hemisphere centered at that point; the other hemisphere can be mapped separately, using a second projection centered at the antipode.

The Lambert azimuthal projection was originally conceived as an equal-area map projection. It is now also used in disciplines such as geology to plot directional data, as follows.

A direction in three-dimensional space corresponds to a line through the origin. The set of all such lines is itself a space, called the real projective plane in mathematics. Every line through the origin intersects the unit sphere in exactly two points, one of which is on the lower hemisphere *z* ≤ 0. (Horizontal lines intersect the equator *z* = 0 in two antipodal points. It is understood that antipodal points on the equator represent a single line. See quotient topology.) Hence the directions in three-dimensional space correspond (almost perfectly) to points on the lower hemisphere. The hemisphere can then be plotted as a disk of radius √2 using the Lambert azimuthal projection.

Thus the Lambert azimuthal projection lets us plot directions as points in a disk. Due to the equal-area property of the projection, one can integrate over regions of the real projective plane (the space of directions) by integrating over the corresponding regions on the disk. This is useful for statistical analysis of directional data,^{ [6] } including random rigid rotation.^{ [8] }

Not only lines but also planes through the origin can be plotted with the Lambert azimuthal projection. A plane intersects the hemisphere in a circular arc, called the *trace* of the plane, which projects down to a curve (typically non-circular) in the disk. One can plot this curve, or one can alternatively replace the plane with the line perpendicular to it, called the *pole*, and plot that line instead. When many planes are being plotted together, plotting poles instead of traces produces a less cluttered plot.

Researchers in structural geology use the Lambert azimuthal projection to plot crystallographic axes and faces, lineation and foliation in rocks, slickensides in faults, and other linear and planar features. In this context the projection is called the **equal-area hemispherical projection**. There is also an equal-angle hemispherical projection defined by stereographic projection.^{ [6] }

The discussion here has emphasized the lower hemisphere *z* ≤ 0, but some disciplines prefer the upper hemisphere *z* ≥ 0.^{ [6] } Indeed, any hemisphere can be used to record the lines through the origin in three-dimensional space.

^{[ citation needed ]}

Let be two parameters for which and . Let be a "time" parameter (equal to the height, or vertical thickness, of the shell in the animation). If a uniform rectilinear grid is drawn in space, then any point in this grid is transformed to a point on a spherical shell of height according to the mapping

where . Each frame in the animation corresponds to a parametric plot of the deformed grid at a fixed value of the shell height (ranging from 0 to 2). Physically, is the stretch (deformed length divided by initial length) of infinitesimal line line segments. This mapping can be converted to one that keeps the south pole fixed by instead using

Regardless of the values of , the Jacobian of this mapping is everywhere equal to 1, showing that it is indeed an equal area mapping throughout the animation. This generalized mapping includes the Lambert projection as a special case when .

Application: this mapping can assist in explaining the meaning of a Lambert projection by showing it to "peel open" the sphere at a pole, morphing it to a disk without changing area enclosed by grid cells.

Wikimedia Commons has media related to . Lambert azimuthal equal-area projection |

A **sphere** is a geometrical object in three-dimensional space that is the surface of a ball.

In mathematics, a **spherical coordinate system** is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the *radial distance* of that point from a fixed origin, its *polar angle* measured from a fixed zenith direction, and the *azimuthal angle* of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen as the three-dimensional version of the polar coordinate system.

In mathematics and physics, **Laplace's equation** is a second-order partial differential equation named after Pierre-Simon Laplace who first studied its properties. This is often written as

In mathematics, a **3-sphere**, or **glome**, is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensions is an ordinary sphere, the boundary of a ball in four dimensions is a 3-sphere. A 3-sphere is an example of a 3-manifold and an n-sphere.

A **great circle**, also known as an **orthodrome**, of a sphere is the intersection of the sphere and a plane that passes through the center point of the sphere. A great circle is the largest circle that can be drawn on any given sphere. Any diameter of any great circle coincides with a diameter of the sphere, and therefore all great circles have the same center and circumference as each other. This special case of a circle of a sphere is in opposition to a *small circle*, that is, the intersection of the sphere and a plane that does not pass through the center. Every circle in Euclidean 3-space is a great circle of exactly one sphere.

The **Roman surface** or **Steiner surface** is a self-intersecting mapping of the real projective plane into three-dimensional space, with an unusually high degree of symmetry. This mapping is not an immersion of the projective plane; however, the figure resulting from removing six singular points is one. Its name arises because it was discovered by Jakob Steiner when he was in Rome in 1844.

In geometry, the **stereographic projection** is a particular mapping (function) that projects a sphere onto a plane. The projection is defined on the entire sphere, except at one point: the projection point. Where it is defined, the mapping is smooth and bijective. It is conformal, meaning that it preserves angles at which curves meet. It is neither isometric nor area-preserving: that is, it preserves neither distances nor the areas of figures.

An **ellipsoid** is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mathematics, a **unit vector** in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat": . The term direction vector is used to describe a unit vector being used to represent spatial direction, and such quantities are commonly denoted as **d**. Two 2D direction vectors, **d1** and **d2** are illustrated. 2D spatial directions represented this way are numerically equivalent to points on the unit circle.

In mechanics and geometry, the **3D rotation group**, often denoted **SO(3)**, is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance, and orientation. Every non-trivial rotation is determined by its axis of rotation and its angle of rotation. Composing two rotations results in another rotation; every rotation has a unique inverse rotation; and the identity map satisfies the definition of a rotation. Owing to the above properties, the set of all rotations is a group under composition. Rotations are not commutative, making it a nonabelian group. Moreover, the rotation group has a natural structure as a manifold for which the group operations are smoothly differentiable; so it is in fact a Lie group. It is compact and has dimension 3.

In mathematics and physical science, **spherical harmonics** are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

In 1851, George Gabriel Stokes derived an expression, now known as **Stokes law**, for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. Stokes' law is derived by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

In geometry, the area enclosed by a circle of radius r is π *r*^{2}. Here the Greek letter π represents a constant, approximately equal to 3.14159, which is equal to the ratio of the circumference of any circle to its diameter.

In cartography, a **Tissot's indicatrix** is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

**Toroidal coordinates** are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

The **direct-quadrature-zero****transformation** or **zero-direct-quadrature****transformation** is a tensor that rotates the reference frame of a three-element vector or a three-by-three element matrix in an effort to simplify analysis. The DQZ transform is the product of the Clarke transform and the Park transform, first proposed in 1929 by Robert H. Park.

**Geographical distance** is the distance measured along the surface of the earth. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic problem.

The **Eckert IV projection** is an equal-area pseudocylindrical map projection. The length of the polar lines is half that of the equator, and lines of longitude are semiellipses, or portions of ellipses. It was first described by Max Eckert in 1906 as one of a series of three pairs of pseudocylindrical projections. Within each pair, meridians are the same whereas parallels differ. Odd-numbered projections have parallels spaced equally, whereas even-numbered projections have parallels spaced to preserve area. Eckert IV is paired with Eckert III.

The **Boggs eumorphic projection** is a pseudocylindrical, equal-area map projection used for world maps. Normally it is presented with multiple interruptions. Its equal-area property makes it useful for presenting spatial distribution of phenomena. The projection was developed in 1929 by Samuel Whittemore Boggs (1889–1954) to provide an alternative to the Mercator projection for portraying global areal relationships. Boggs was geographer for the United States Department of State from 1924 until his death. The Boggs eumorphic projection has been used occasionally in textbooks and atlases.

The **Strebe 1995 projection**, **Strebe projection**, **Strebe lenticular equal-area projection**, or **Strebe equal-area polyconic projection** is an equal-area map projection presented by Daniel "daan" Strebe in 1994. Strebe designed the projection to keep all areas proportionally correct in size; to push as much of the inevitable distortion as feasible away from the continental masses and into the Pacific Ocean; to keep a familiar equatorial orientation; and to do all this without slicing up the map.

- ↑ Mulcahy, Karen. "Lambert Azimuthal Equal Area". City University of New York . Retrieved 2007-03-30.
- ↑
*The Times Atlas of the World*(1967), Boston: Houghton Mifflin, Plate 3, et passim. - ↑ "Map Projections: From Spherical Earth to Flat Map". United States Department of the Interior. 2008-04-29. Archived from the original on 2009-05-07. Retrieved 2009-04-08.
- ↑ "Short Proceedings of the 1st European Workshop on Reference Grids, Ispra, 27-29 October 2003" (PDF). European Environment Agency. 2004-06-14. p. 6. Retrieved 2009-08-27.
- ↑ Ramsay (1967)
- 1 2 3 4 5 Borradaile (2003).
- ↑ "Geomatics Guidance Note 7, part 2: Coordinate Conversions & Transformations including Formulas" (PDF). International Association of Oil & Gas Producers. September 2016. Retrieved 2017-12-17.
- ↑ Brannon, R.M., "Rotation, Reflection, and Frame Change", 2018

- Borradaile, Graham J. (2003).
*Statistics of Earth science data*. Berlin: Springer-Verlag. ISBN 3-540-43603-0. - Do Carmo; Manfredo P. (1976).
*Differential geometry of curves and surfaces*. Englewood Cliffs, New Jersey: Prentice Hall. ISBN 0-13-212589-7. - Hobbs, Bruce E., Means, Winthrop D., and Williams, Paul F. (1976).
*An outline of structural geology*. New York: John Wiley & Sons, Inc. ISBN 0-471-40156-0.CS1 maint: multiple names: authors list (link) - Ramsay, John G. (1967).
*Folding and fracturing of rocks*. New York: McGraw-Hill. - Spivak, Michael (1999).
*A comprehensive introduction to differential geometry*. Houston, Texas: Publish or Perish. ISBN 0-914098-70-5.

- Explanation of co-ordinate conversions with diagrams

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.