Snyder equal-area projection

Last updated

Snyder equal-area projection is a polyhedral map projection used in the ISEA (Icosahedral Snyder Equal Area) discrete global grids . It is named for John P. Snyder, who developed the projection in the 1990s. [1]

It is a modified Lambert azimuthal equal-area projection, most often applied to a polyhedral globe consisting of an icosahedron. [2] [3]

With the dual tiling system is possible to transform the big triangular faces (gray) into small centered-hexagons (red), and vice versa. DualTiling-TriangHex-fig1.png
With the dual tiling system is possible to transform the big triangular faces (gray) into small centered-hexagons (red), and vice versa.

Use in the ISEA model

As stated by Carr at al., [3] page 32:

The S in ISEA refers to John P. Snyder. He came out of retirement specifically to address projection problems with the original EMAP grid (see Snyder, 1992). He developed the equal area projection that underlies the gridding system.
ISEA grids are simple in concept. Begin with a Snyder Equal Area projection to a regular icosahedron (...) inscribed in a sphere. In each of the 20 equilateral triangle faces of the icosahedron inscribe a hexagon by dividing each triangle edge into thirds (...). Then project the hexagon back onto the sphere using the Inverse Snyder Icosahedral equal area projection. This yields a coarse-resolution equal area grid called the resolution 1 grid. It consists of 20 hexagons on the surface of the sphere and 12 pentagons centered on the 12 vertices of the icosahedron.

Related Research Articles

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, the regular icosahedron is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of the Platonic solid and of the deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:

<span class="mw-page-title-main">Truncated icosahedron</span> Archimedean solid

In geometry, the truncated icosahedron is an Archimedean solid, one of 13 convex isogonal nonprismatic solids whose 32 faces are two or more types of regular polygons. It is the only one of these shapes that does not contain triangles or squares. In general usage, the degree of truncation is assumed to be uniform unless specified.

<span class="mw-page-title-main">Map projection</span> Systematic representation of the surface of a sphere or ellipsoid onto a plane

In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography.

<span class="mw-page-title-main">Hexagon</span> Shape with six sides

In geometry, a hexagon is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.

<span class="mw-page-title-main">Dymaxion map</span> Polyhedral compromise map projection

The Dymaxion map or Fuller map is a projection of a world map onto the surface of an icosahedron, which can be unfolded and flattened to two dimensions. The flat map is heavily interrupted in order to preserve shapes and sizes.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">600-cell</span> Four-dimensional analog of the icosahedron

In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,5}. It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from "tetrahedral complex") and a polytetrahedron, being bounded by tetrahedral cells.

<span class="mw-page-title-main">120-cell</span> Four-dimensional analog of the dodecahedron

In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid.

<span class="mw-page-title-main">Equirectangular projection</span> Cylindrical equidistant map projection

The equirectangular projection, and which includes the special case of the plate carrée projection, is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100.

<span class="mw-page-title-main">Chamfered dodecahedron</span> Goldberg polyhedron with 42 faces

In geometry, the chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

<span class="mw-page-title-main">Regular dodecahedron</span> Polyhedron with 12 regular pentagonal faces

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of 12 regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 edges, and 160 diagonals. It is represented by the Schläfli symbol {5,3}.

In the context of a spatial index, a grid or mesh is a regular tessellation of a manifold or 2-D surface that divides it into a series of contiguous cells, which can then be assigned unique identifiers and used for spatial indexing purposes. A wide variety of such grids have been proposed or are currently in use, including grids based on "square" or "rectangular" cells, triangular grids or meshes, hexagonal grids, and grids based on diamond-shaped cells. A "global grid" is a kind of grid that covers the entire surface of the globe.

<span class="mw-page-title-main">Geodesic grid</span> Spatial grid based on a geodesic polyhedron

A geodesic grid is a spatial grid based on a geodesic polyhedron or Goldberg polyhedron.

<span class="mw-page-title-main">Quadrilateralized spherical cube</span> Polyhedral equal-area map projection

In mapmaking, a quadrilateralized spherical cube, or quad sphere for short, is an equal-area polyhedral map projection and discrete global grid scheme for data collected on a spherical surface. It was first proposed in 1975 by Chan and O'Neill for the Naval Environmental Prediction Research Facility. This scheme is also often called the COBE sky cube, because it was designed to hold data from the Cosmic Background Explorer (COBE) project.

<span class="mw-page-title-main">HEALPix</span> Pseudocylindrical equal-area map projection

HEALPix, an acronym for Hierarchical Equal Area isoLatitude Pixelisation of a 2-sphere, is an algorithm for pixelisation of the 2-sphere based on subdivision of a distorted rhombic dodecahedron, and the associated class of map projections. The pixelisation algorithm was devised in 1997 by Krzysztof M. Górski at the Theoretical Astrophysics Center in Copenhagen, Denmark, and first published as a preprint in 1998.

<span class="mw-page-title-main">Goldberg polyhedron</span> Convex polyhedron made from hexagons and pentagons

In mathematics, and more specifically in polyhedral combinatorics, a Goldberg polyhedron is a convex polyhedron made from hexagons and pentagons. They were first described in 1937 by Michael Goldberg (1902–1990). They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, and they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other. A Goldberg polyhedron is a dual polyhedron of a geodesic sphere.

<span class="mw-page-title-main">Discrete global grid</span> Partition of Earths surface into subdivided cells

A discrete global grid (DGG) is a mosaic that covers the entire Earth's surface. Mathematically it is a space partitioning: it consists of a set of non-empty regions that form a partition of the Earth's surface. In a usual grid-modeling strategy, to simplify position calculations, each region is represented by a point, abstracting the grid as a set of region-points. Each region or region-point in the grid is called a cell.

<span class="mw-page-title-main">Equal-area projection</span> Type of map projection

In cartography, an equivalent, authalic, or equal-area projection is a map projection that preserves relative area measure between any and all map regions. Equivalent projections are widely used for thematic maps showing scenario distribution such as population, farmland distribution, forested areas, and so forth, because an equal-area map does not change apparent density of the phenomenon being mapped.

<span class="mw-page-title-main">Polyhedral map projection</span> Type of map projection

A polyhedral map projection is a map projection based on a spherical polyhedron. Typically, the polyhedron is overlaid on the globe, and each face of the polyhedron is transformed to a polygon or other shape in the plane. The best-known polyhedral map projection is Buckminster Fuller's Dymaxion map. When the spherical polyhedron faces are transformed to the faces of an ordinary polyhedron instead of laid flat in a plane, the result is a polyhedral globe.

References

  1. Snyder, J.P. (1992). "An Equal-Area Map Projection for Polyhedral Globes". Cartographica. 29 (1): 10–21. doi:10.3138/27H7-8K88-4882-1752.(subscription required)
  2. "Icosahedral Snyder Equal Area". PROJ. Proj Contributors. 2004-04-04 [n.d.] Retrieved 2024-04-09.
  3. 1 2 Carr, D.; Kahn, R.; Sahr, K.; Olsen, T. (1997). "ISEA Discrete Global Grids". Statistical Computing and Statistical Graphics Newsletter. 8 (2/3): 31–39. Retrieved 2024-04-09.