Discrete global grid

Last updated

A discrete global grid (DGG) is a mosaic that covers the entire Earth's surface. Mathematically it is a space partitioning: it consists of a set of non-empty regions that form a partition of the Earth's surface. [1] In a usual grid-modeling strategy, to simplify position calculations, each region is represented by a point, abstracting the grid as a set of region-points. Each region or region-point in the grid is called a cell.

Contents

When each cell of a grid is subject to a recursive partition, resulting in a "series of discrete global grids with progressively finer resolution", [2] forming a hierarchical grid, it is called a hierarchical DGG (sometimes "global hierarchical tessellation" [3] or "DGG system").

Discrete global grids are used as the geometric basis for the building of geospatial data structures. Each cell is related with data objects or values, or (in the hierarchical case) may be associated with other cells. DGGs have been proposed for use in a wide range of geospatial applications, including vector and raster location representation, data fusion, and spatial databases. [1]

The most usual grids are for horizontal position representation, using a standard datum, like WGS84. In this context, it is common also to use a specific DGG as foundation for geocoding standardization.

In the context of a spatial index, a DGG can assign unique identifiers to each grid cell, using it for spatial indexing purposes, in geodatabases or for geocoding.

Reference model of the globe

The "globe", in the DGG concept, has no strict semantics, but in geodesy a so-called "grid reference system" is a grid that divides space with precise positions relative to a datum, that is an approximated a "standard model of the Geoid". So, in the role of Geoid, the "globe" covered by a DGG can be any of the following objects:

As a global modeling process, modern DGGs, when including projection process, tend to avoid surfaces like cylinder or a conic solids that result in discontinuities and indexing problems. Regular polyhedra and other topological equivalents of sphere led to the most promising known options to be covered by DGGs, [1] because "spherical projections preserve the correct topology of the Earth – there are no singularities or discontinuities to deal with". [4]

When working with a DGG it is important to specify which of these options was adopted. So, the characterization of the reference model of the globe of a DGG can be summarized by:

NOTE: when the DGG is covering a projection surface, in a context of data provenance, the metadata about reference-Geoid is also important typically informing its ISO 19111's CRS value, with no confusion with the projection surface.

Types

The main distinguishing feature to classify or compare DGGs is the use or not of hierarchical grid structures:

Other usual criteria to classify a DGG are tile-shape and granularity (grid resolution):

Examples

Non-hierarchical grids

The most common class of discrete global grids are those that place cell center points on longitude/latitude meridians and parallels, or which use the longitude/latitude meridians and parallels to form the boundaries of rectangular cells. Examples of such grids, all based on latitude/longitude:

UTM zones:
Divides the Earth into sixty (strip) zones, each being a six-degree band of longitude. In digital media removes overlapping zone. Use secant transverse Mercator projection in each zone. Define 60 secant cylinders, 1 per zone.
The UTM zones was enhanced by Military Grid Reference System (MGRS), by addition of the Latitude bands.
Utm-zones-USA.svg
inception: 1940scovered object: cylinder (60 options)projection: UTM or latlongirregular tiles: polygonal stripsgranularity: coarse
(modern) UTM – Universal Transverse Mercator:
Is a discretization of the continuous UTM grid, with a kind of 2-level hierarchy, where the first level (coarse grain) correspond to the "UTM zones with latitude bands" (the MGRS), use the same 60 cylinders as reference-projection objects.
Each fine-grain cell is designated by a structured ID composed by "grid zone designator", "the 100,000-meter square identifier" and "numerical location". The grid resolution is a direct function of the number of digits in the coordinates, that is also standardized. For instance the cell 17N 630084 4833438 is a ~10mx10m square.
PS: this standard use 60 distinct cylinders for projections. There are also "Regional Transverse Mercator" (RTM or UTM Regional) and "Local Transverse Mercator" (LTM or UTM Local) standards, with more specific cylinders, for better fit and precision at the point of interest.
Utmzonenugitterp.png
inception: 1950scovered object: cylinder (60 options)projection: UTMrectangular tiles: equal-angle (conformal)granularity: fine
ISO 6709:
Discretizes the traditional "graticule" representation and the modern numeric-coordinate cell-based locations. The granularity is fixed by a simple convention of the numeric representation, e. g. one-degree graticule, .01 degree graticule, etc. and it results in non-equal-area cells over the grid. The shape of the cells are rectangular except in the poles, where they are triangular. The numeric representation is standardized by two main conventions: degrees (Annex D) and decimal (Annex F). The grid resolution is controlled by the number of digits (Annex H).
Geographic coordinates sphere.png
inception: 1983covered object: Geoid (any ISO 19111's CRS)projection: nonerectangular tiles: uniform spheroidal shapegranularity: fine
Primary DEM (TIN DEM):
A vector-based triangular irregular network (TIN) the TIN DEM dataset is also referred to as a primary (measured) DEM. Many DEM are created on a grid of points placed at a regular angular increments of latitude and longitude. Examples include the Global 30 Arc-Second Elevation Dataset (GTOPO30). [5] and the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). [6] Triangulated irregular network is a representation of a continuous surface consisting entirely of triangular facets.
Delaunay-Triangulation.svg
inception: 1970scovered object: terrainprojection: nonetriangular non-uniform tiles: parametrized (vectorial)granularity: fine
Arakawa grids:
Was used for Earth system models for meteorology and oceanography for example, the Global Environmental Multiscale Model (GEM) uses Arakawa grids for Global Climate Modeling. [7] The called "A-grid" the reference DGG, to be compared with other DGGs. Used in the 1980s with ~500x500 space resolutions.
inception: 1977covered object: geoidprojection: ?rectangular tiles: parametric, space-timegranularity: medium
WMO squares:
A specialized grid, used uniquely by NOAA, divides a chart of the world with latitude-longitude gridlines into grid cells of 10° latitude by 10° longitude, each with a unique, 4-digit numeric identifier (the first digit identifies quadrants NE/SE/SW/NW).
inception: 2001covered object: geoidprojection: noneRegular tiles: 36x18 rectangular cellsgranularity: coarse
World Grid Squares:
Are a compatible extension of Japanese Grid Squares standardized in Japan Industrial Standards (JIS X0410) to worldwide. The World Grid Square code can identify grid squares covering the world based on nine layers. We can express a grid square by using from 6 to 16 digit sequence with accordance to its resolution. [8]
inception: 2015covered object: geoidprojection: noneRegular tiles: rectangular cellsgranularity: coarse,medium,fine

Hierarchical grids

Successive space partitioning. The grey-and-green grid in the second and third maps are hierarchical. Great Britain Box-hiearchy.png
Successive space partitioning. The grey-and-green grid in the second and third maps are hierarchical.

The right aside illustration show 3 boundary maps of the coast of Great Britain. The first map was covered by a grid-level-0 with 150 km size cells. Only a grey cell in the center, with no need of zoom for detail, remains level-0; all other cells of the second map was partitioned into four-cells-grid (grid-level-1), each with 75 km. In the third map 12 cells level-1 remains as grey, all other was partitioned again, each level-1-cell transformed into a level-2-grid.
Examples of DGGs that use such recursive process, generating hierarchical grids, include:

ISEA discrete global grids (ISEA DGGs):
are a class of grids proposed by researchers at Oregon State University. [1] The grid cells are created as regular polygons on the surface of an icosahedron, and then inversely projected using the Icosahedral Snyder Equal Area (ISEA) map projection [9] to form equal area cells on the sphere. The icosahedron's orientation with respect to the Earth may be optimized for different criteria. [10]

Cells may be hexagons, triangles, or quadrilaterals. Multiple resolutions are indicated by choosing an aperture, or ratio between cell areas at consecutive resolutions. Some applications of ISEA DGGs include data products generated by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite, which uses an ISEA4H9 (aperture 4 Hexagonal DGGS resolution 9), [11] and the commercial software Global Grid Systems Insight, [12] which uses an ISEA3H (aperture 3 Hexagonal DGGS).

inception: 1992..2004covered object: ?projection: equal-areaparametrized (hexagons, triangles or quadrilaterals) tiles: equal-areagranularity: fine
COBE – Quadrilateralized Spherical cube:
Cube: [13] Similar decomposition of sphere tham HEALPix and S2. But does not use space-filling curve, edges are not geodesics, and projection is more complicated.
inception: 1975..1991covered object: cubeprojection: Curvilinear perspectivequadrilateral tiles: uniform area-preservinggranularity: fine
Quaternary Triangular Mesh (QTM):
QTM has triangular-shaped cells created by the 4-fold recursive subdivision of a spherical octahedron. [14] [15]
inception: 1999 ... 2005covered object: octahedron (or other)projection: Lambert's equal-area cylindricaltriangular tiles: uniform area-preservedgranularity: fine
Hierarchical Equal Area isoLatitude Pixelization (HEALPix):
HEALPix has equal area quadrilateral-shaped cells and was originally developed for use with full-sky astrophysical data sets. [16]

The usual projection is "H?4, K?3 HEALPix projection". Main advantage, comparing with others of same indexing niche as S2, "is suitable for calculations involving spherical harmonics". [17]

HealpixGridRefinement.jpg
inception: 2006covered object: Geoidprojection: (K,H) parametrized HEALPix projectionquadrilateral tiles: uniform area-preservedgranularity: fine
Hierarchical Triangular Mesh (HTM):
Developed in 2003...2007, HTM "is a multi level, recursive decomposition of the sphere. It start with an octahedron, let this be level 0. As you project the edges of the octahedron onto the (unit) sphere creates 8 spherical triangles, 4 on the Northern and 4 on the Southern hemispheres". [18] Then, each triangle is refined into 4 subtriangles (1-to-4 split). The first public operational version seems [19] the HTM-v2 in 2004.
HTM-diagram.png
inception: 2004covered object: Geoidprojection: nonetriangular tiles: spherical equilateresgranularity: fine
Geohash:
Latitude and longitude are merged, enterlacing bits in the joined number. The binary result is represented with base32, offering a compact human-readable code. When used as spatial index, corresponds to a Z-order curve. There are some variants like Geohash-36.
Four-level Z.svg
inception: 2008covered object: Geoidprojection: nonesemi-regular tiles: rectangulargranularity: fine
S2 / S2Region:
The "S2 Grid System" is part of the "S2 Geometry Library" [20] (the name is derived from the mathematical notation for the n-sphere, Sn). It implements an index system based on cube projection and the space-filling Hilbert curve, developed at Google. [21] [22] The S2Region of S2 is the most general representation of its cells, where cell-position and metric (e.g. area) can be calculated. Each S2Region is a subgrid, resulting in a hierarchy limited to 31 levels. At level30 resolution is estimated [23] in 1 cm2, at level0 is 85011012 km2. The cell-identifier of the hierarchical grid of a cube face (6 faces) have and ID of 60 bits (so "every cm2 on Earth can be represented using a 64-bit integer).
Hilbert Cubed Sphere.png
inception: 2015covered object: cubeprojection: spherical projections in each cube face using quadratic functionsemi-regular tiles: quadrilateral projectionsgranularity: fine
S2 / S2LatLng:
The DGG supplied by S2LatLng representation, like an ISO 6709 grid, but hierarchical and with its specific cell shape.
inception: 2015covered object: Geoid or sphereprojection: nonesemi-regular tiles: quadrilateralgranularity: fine
S2 / S2CellId:
The DGG supplied by S2CellId representation. Each cell-ID is a 64-bit unsigned integer unique identifier, for any hierarchy level.
inception: 2015covered object: cubeprojection: ?semi-regular tiles: quadrilateralgranularity: fine

Standard equal-area hierarchical grids

There is a class of hierarchical DGG's named by the Open Geospatial Consortium (OGC) as "discrete global grid systems" (DGGS), that must to satisfy 18 requirements. Among them, what best distinguishes this class from other hierarchical DGGs, is the Requirement-8, "For each successive level of grid refinement, and for each cell geometry, (...) Cells that are equal area (...) within the specified level of precision". [24]

A DGGS is designed as a framework for information as distinct from conventional coordinate reference systems originally designed for navigation. For a grid-based global spatial information framework to operate effectively as an analytical system it should be constructed using cells that represent the surface of the Earth uniformly. [24] The DGGS standard include in its requirements a set of functions and operations that the framework must to offer.

All DGGS's level-0 cells are equal area faces of a Regular polyhedra...

Regular polyhedra (top) and their corresponding equal area DGG DGGs-asOGC-topic21-fig1.png
Regular polyhedra (top) and their corresponding equal area DGG

The DGGS framework

The standard defines the requirements of a hierarchical DGG, including how to operate the grid. Any DGG that satisfies these requirements can be named DGGS. "A DGGS specification SHALL include a DGGS Reference Frame and the associated Functional Algorithms as defined by the DGGS Core Conceptual Data Model". [25]

For an Earth grid system to be compliant with this Abstract Specification it must define a hierarchical tessellation of equal area cells that both partition the entire Earth at multiple levels of granularity and provide a global spatial reference frame. The system must also include encoding methods to: address each cell; assign quantized data to cells; and perform algebraic operations on the cells and the data assigned to them. Main concepts of the DGGS Core Conceptual Data Model:
  1. reference frame elements, and,
  2. functional algorithm elements; comprising:
    1. quantization operations,
    2. algebraic operations, and
    3. interoperability operations.

Database modeling

In all DGG databases the grid is a composition of its cells. The region and centralPoint are illustrated as typical properties or subclasses. The cell identifier (cell ID) is also an important property, used as internal index and/or as public label of the cell (instead the point-coordinates) in geocoding applications. Sometimes, as in the MGRS grid, the coordinates make the role of ID. DGG-uml01.png
In all DGG databases the grid is a composition of its cells. The region and centralPoint are illustrated as typical properties or subclasses. The cell identifier (cell ID) is also an important property, used as internal index and/or as public label of the cell (instead the point-coordinates) in geocoding applications. Sometimes, as in the MGRS grid, the coordinates make the role of ID.

There are many DGGs because there are many representational, optimization and modeling alternatives. All DGG grid is a composition of its cells, and, in the Hierarchical DGG each cell uses a new grid over its local region.

The illustration is not adequate to TIN DEM cases and similar "raw data" structures, where the database not use the cell concept (that geometrically is the triangular region), but nodes and edges: each node is an elevation and each edge is the distance between two nodes.

In general, each cell of the DGG is identified by the coordinates of its region-point (illustrated as the centralPoint of a database representation). It is also possible, with loss of functionality, to use a "free identifier", that is, any unique number or unique symbolic label per cell, the cell ID. The ID is usually used as spatial index (such as internal Quadtree or k-d tree), but is also possible to transform ID into a human-readable label for geocoding applications.

Modern databases (e.g. using S2 grid) use also multiple representations for the same data, offering both, a grid (or cell region) based in the Geoid and a grid-based in the projection.

History

Discrete global grids with cell regions defined by parallels and meridians of latitude/longitude have been used since the earliest days of global geospatial computing. Before it, the discretization of continuous coordinates for practical purposes, with paper maps, occurred only with low granularity. Perhaps the most representative and main example of DGG of this pre-digital era was the 1940s military UTM DGGs, with finer granulated cell identification for geocoding purposes. Similarly some hierarchical grid exists before geospatial computing, but only in coarse granulation.

A global surface is not required for use on daily geographical maps, and the memory was very expensive before the 2000s, to put all planetary data into the same computer. The first digital global grids were used for data processing of the satellite images and global (climatic and oceanographic) fluid dynamics modeling.

The first published references to hierarchical geodesic DGG systems are to systems developed for atmospheric modeling and published in 1968. These systems have hexagonal cell regions created on the surface of a spherical icosahedron. [26] [27]

The spatial hierarchical grids were subject to more intensive studies in the 1980s, [28] when main structures, as Quadtree, were adapted in image indexing and databases.

While specific instances of these grids have been in use for decades, the term discrete global grids was coined by researchers at Oregon State University in 1997 [2] to describe the class of all such entities.

... OGC standardization in 2017...

Comparison and evolution

Comparing grid-cell identifier schemas of two different curves, Morton and Hilbert. The Hilbert curve was adopted in DGGs like S2-geometry, Morton curve in DGGs like Geohash. The adoption of Hilbert curve was an evolution because have less "jumps", preserving nearest cells as neighbours. Comparing-Geoash-Hilbert2.png
Comparing grid-cell identifier schemas of two different curves, Morton and Hilbert. The Hilbert curve was adopted in DGGs like S2-geometry, Morton curve in DGGs like Geohash. The adoption of Hilbert curve was an evolution because have less "jumps", preserving nearest cells as neighbours.

The evaluation discrete global grid consists of many aspects, including area, shape, compactness, etc. Evaluation methods for map projection, such as Tissot's indicatrix, are also suitable for evaluating map projection-based discrete global grid.

In addition, averaged ratio between complementary profiles (AveRaComp) [29] gives a good evaluation of shape distortions for quadrilateral-shaped discrete global grid.

Database development-choices and adaptations are oriented by practical demands for greater performance, reliability or precision. The best choices are being selected and adapted to necessities, propitiating the evolution of the DGG architectures. Examples of this evolution process: from non-hierarchical to hierarchical DGGs; from the use of Z-curve indexes (a naive algorithm based in digits-interlacing), used by Geohash, to Hilbert-curve indexes, used in modern optimizations, like S2.

Geocode variants

In general each cell of the grid is identified by the coordinates of its region-point, but it is also possible to simplify the coordinate syntax and semantics, to obtain an identifier, as in a classic alphanumeric grids and find the coordinates of a region-point from its identifier. Small and fast coordinate representations is a goal in the cell-ID implementations, for any DGG solutions.

There is no loss of functionality when using a "free identifier" instead of a coordinate, that is, any unique number (or unique symbolic label) per region-point, the cell ID. So, to transform a coordinate into a human-readable label, and/or compressing the length of the label, is an additional step in the grid representation. This representation is named geocode.

Some popular "global place codes" as ISO 3166-1 alpha-2 for administrative regions or Longhurst code for ecological regions of the globe, are partial in globe's coverage. By other hand, any set of cell-identifiers of a specific DGG can be used as "full-coverage place codes". Each different set of IDs, when used as a standard for data interchange purposes, are named "geocoding system".

There are many ways to represent the value of a cell identifier (cell-ID) of a grid: structured or monolithic, binary or not, human-readable or not. Supposing a map feature, like the Singapore's Merlion fountaine (~5m scale feature), represented by its minimum bounding cell or a center-point-cell, the cell ID will be:

Cell IDDGG variant name and parametersID structure; grid resolution
(1° 17 13.28 N, 103° 51 16.88 E)ISO 6709/D in degrees (Annex ), CRS = WGS84lat(deg min sec dir) long(deg min sec dir);
seconds with 2 fractionary places
(1.286795, 103.854511)ISO 6709/F in decimal and CRS = WGS84(lat,long); 6 fractionary places
(1.65AJ, 2V.IBCF)ISO 6709/F in decimal in base36 (non-ISO) and CRS = WGS84(lat,long); 4 fractionary places
w21z76281Geohash, base32, WGS84monolithic; 9 characters
6PH57VP3+PRPlusCode, base20, WGS84monolithic; 10 characters
48N 372579 142283UTM, standard decimal, WGS84zone lat long; 3 + 6 + 6 digits
48N 7ZHF 31SBUTM, coordinates base36, WGS84zone lat long; 3 + 4 + 4 digits

All these geocodes represents the same position in the globe, with similar precision, but differ in string-length, separators-use and alphabet (non-separator characters). In some cases the "original DGG" representation can be used. The variants are minor changes, affecting only final representation, for example the base of the numeric representation, or interlacing parts of the structured into only one number or code representation. The most popular variants are used for geocoding applications.

Alphanumeric global grids

DGGs and its variants, with human-readable cell-identifiers, has been used as de facto standard for alphanumeric grids. It is not limited to alphanumeric symbols, but "alphanumeric" is the most usual term.

Geocodes are notations for locations, and in a DGG context, notations to express grid cell IDs. There are a continuous evolution in digital standards and DGGs, so a continuous change in the popularity of each geocoding convention in the last years. Broader adoption also depends on country's government adoption, use in popular mapping platforms, and many other factors.

Examples used in the following list are about "minor grid cell" containing the Washington obelisk, 38° 53 22.11 N, 77° 2 6.88 W.

DGG name/varInception and licenseSummary of variantDescription and example
UTM zones/non-overlapped1940s – CC0 original without overlappingDivides the Earth into sixty polygonal strips. Example: 18S
Discrete UTM 1940s – CC0 original UTM integersDivides the Earth into sixty zones, each being a six-degree band of longitude, and uses a secant transverse Mercator projection in each zone. No information about first digital use and conventions. Supposed that standardizations were later ISO's (1980s). Example: 18S 323483 4306480
ISO 6709 1983original degree representationThe grid resolutions is a function of the number of digits with leading zeroes filled when necessary, and fractional part with an appropriate number of digits to represent the required precision of the grid. Example: 38° 53 22.11 N, 77° 2 6.88 W.
ISO 6709 19837 decimal digits representationVariant based in the XML representation where the data structure is a "tuple consisting of latitude and longitude represents 2-dimensional geographic position", and each number in the tuple is a real number discretized with 7 decimal places. Example: 38.889475, -77.035244.
Mapcode 2001 – Apache2originalThe first to adopt a mix code, in conjunction with ISO 3166's codes (country or city). In 2001 the algorithms were licensed Apache2, which provides a patent grant.
Geohash 2008 – CC0 originalIs like a bit-interlaced latLong, and the result is represented with base32.
Geohash-36 2011 – CC0 originalDespite the similar name, does not use the same algorithm as Geohash. Uses a 6 by 6 grid and associates a letter to each cell.
What3words 2013 patentedoriginal (English)converts 3×3 meter squares into 3 English-dictionary words. [30]
PlusCode 2014 – Apache2 [31] originalAlso named "Open Location Code". Codes are base20 numbers, and can use city-names, reducing code by the size of the city's bounding box code (like Mapcode strategy). Example: 87C4VXQ7+QV.
S2 Cell ID/Base322015 – Apache2 [32] original 64-bit integer expressed as base32Hierarchical and very effective database indexing, but no standard representation for base32 and city-prefixes, as PlusCode.
What3words/otherLang2016 ... 2017 – patentedother languagessame as English, but using other dictionary as reference for words.
Portuguese example, and 10x14m cell: tenaz.fatual.davam.

Other documented systems:

DGG nameInception – licenseSummaryDescription
C-squares 2003 – "no restriction"Latlong interlacedDecimal-interlacing of ISO LatLong-degree representation, with additional identifiers for intermediate quadrants. It is a "Naive" algorithm when compared with binary-interlacing or Geohash.
GEOREF ~1990 – CC0Based on the ISO LatLong, but uses a simpler and more concise notation"World Geographic Reference System", a military / air navigation coordinate system for point and area identification.
GARS 2007 – restrictedUSA/NGAReference system developed by the National Geospatial-Intelligence Agency (NGA). "the standardized battlespace area reference system across DoD which will impact the entire spectrum of battlespace deconfliction"
WMO squares 2001.. – CC0?specializedNOAA's image download cells. ... divides a chart of the world with latitude-longitude gridlines into grid cells of 10° latitude by 10° longitude, each with a unique, 4-digit numeric identifier. 36x18 rectangular cells (labeled by four digits, the first digit identify quadrants NE/SE/SW/NW).

See also

Related Research Articles

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of the Earth and other astronomical bodies

Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">Map projection</span> Systematic representation of the surface of a sphere or ellipsoid onto a plane

In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography.

Grid, The Grid, or GRID may refer to:

<span class="mw-page-title-main">Projected coordinate system</span> Cartesian geographic coordinate system

A projected coordinate system – also called a projected coordinate reference system, planar coordinate system, or grid reference system – is a type of spatial reference system that represents locations on Earth using Cartesian coordinates (x, y) on a planar surface created by a particular map projection. Each projected coordinate system, such as "Universal Transverse Mercator WGS 84 Zone 26N," is defined by a choice of map projection (with specific parameters), a choice of geodetic datum to bind the coordinate system to real locations on the earth, an origin point, and a choice of unit of measure. Hundreds of projected coordinate systems have been specified for various purposes in various regions.

A geocode is a code that represents a geographic entity. It is a unique identifier of the entity, to distinguish it from others in a finite set of geographic entities. In general the geocode is a human-readable and short identifier.

<span class="mw-page-title-main">Geodetic datum</span> Reference frame for measuring location

A geodetic datum or geodetic system is a global datum reference or reference frame for precisely representing the position of locations on Earth or other planetary bodies by means of geodetic coordinates. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A horizontal datum is used to measure a location across the Earth's surface, in latitude and longitude or another coordinate system; a vertical datum is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). Since the rise of the global positioning system (GPS), the ellipsoid and datum WGS 84 it uses has supplanted most others in many applications. The WGS 84 is intended for global use, unlike most earlier datums.

Address geocoding, or simply geocoding, is the process of taking a text-based description of a location, such as an address or the name of a place, and returning geographic coordinates, frequently latitude/longitude pair, to identify a location on the Earth's surface. Reverse geocoding, on the other hand, converts geographic coordinates to a description of a location, usually the name of a place or an addressable location. Geocoding relies on a computer representation of address points, the street / road network, together with postal and administrative boundaries.

<span class="mw-page-title-main">Universal Transverse Mercator coordinate system</span> Map projection system

The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system.

<span class="mw-page-title-main">Spatial reference system</span> System to specify locations on Earth

A spatial reference system (SRS) or coordinate reference system (CRS) is a framework used to precisely measure locations on the surface of Earth as coordinates. It is thus the application of the abstract mathematics of coordinate systems and analytic geometry to geographic space. A particular SRS specification comprises a choice of Earth ellipsoid, horizontal datum, map projection, origin point, and unit of measure. Thousands of coordinate systems have been specified for use around the world or in specific regions and for various purposes, necessitating transformations between different SRS.

Digital Earth is the name given to a concept by former US vice president Al Gore in 1998, describing a virtual representation of the Earth that is georeferenced and connected to the world's digital knowledge archives.

C-squares is a system of spatially unique, location-based identifiers (geocodes) for areas on the surface of the earth, represented as cells from a latitude- and longitude-based Discrete Global Grid at a hierarchical set of resolution steps, obtained by progressively subdividing 10×10 degree World Meteorological Organization squares; the term "c-square" is also available for use to designate any component cell of the grid. Individual cell identifiers incorporate literal values of latitude and longitude in an interleaved notation, together with additional digits that support intermediate grid resolutions of 5, 0.5, 0.05 degrees, etc.

In the context of a spatial index, a grid or mesh is a regular tessellation of a manifold or 2-D surface that divides it into a series of contiguous cells, which can then be assigned unique identifiers and used for spatial indexing purposes. A wide variety of such grids have been proposed or are currently in use, including grids based on "square" or "rectangular" cells, triangular grids or meshes, hexagonal grids, and grids based on diamond-shaped cells. A "global grid" is a kind of grid that covers the entire surface of the globe.

<span class="mw-page-title-main">Geodesic grid</span> Spatial grid based on a geodesic polyhedron

A geodesic grid is a spatial grid based on a geodesic polyhedron or Goldberg polyhedron.

<span class="mw-page-title-main">Geohash</span> Public domain geocoding invented in 2008

Geohash is a public domain geocode system invented in 2008 by Gustavo Niemeyer which encodes a geographic location into a short string of letters and digits. Similar ideas were introduced by G.M. Morton in 1966. It is a hierarchical spatial data structure which subdivides space into buckets of grid shape, which is one of the many applications of what is known as a Z-order curve, and generally space-filling curves.

A geographic data model, geospatial data model, or simply data model in the context of geographic information systems, is a mathematical and digital structure for representing phenomena over the Earth. Generally, such data models represent various aspects of these phenomena by means of geographic data, including spatial locations, attributes, change over time, and identity. For example, the vector data model represents geography as collections of points, lines, and polygons, and the raster data model represent geography as cell matrices that store numeric values. Data models are implemented throughout the GIS ecosystem, including the software tools for data management and spatial analysis, data stored in a variety of GIS file formats, specifications and standards, and specific designs for GIS installations.

The term Digital Earth Reference Model (DERM) was coined by Tim Foresman in context with a vision for an all encompassing geospatial platform as an abstract for information flow in support of Al Gore's vision for a Digital Earth. The Digital Earth reference model seeks to facilitate and promote the use of georeferenced information from multiple sources over the Internet. A digital Earth reference model defines a fixed global reference frame for the Earth using four principles of a digital system, namely:

geo URI scheme System of geographic location identifiers

The geo URI scheme is a Uniform Resource Identifier (URI) scheme defined by the Internet Engineering Task Force's RFC 5870 as:

a Uniform Resource Identifier (URI) for geographic locations using the 'geo' scheme name. A 'geo' URI identifies a physical location in a two- or three-dimensional coordinate reference system in a compact, simple, human-readable, and protocol-independent way.

<span class="mw-page-title-main">HEALPix</span> Pseudocylindrical equal-area map projection

HEALPix, an acronym for Hierarchical Equal Area isoLatitude Pixelisation of a 2-sphere, is an algorithm for pixelisation of the 2-sphere based on subdivision of a distorted rhombic dodecahedron, and the associated class of map projections. The pixelisation algorithm was devised in 1997 by Krzysztof M. Górski at the Theoretical Astrophysics Center in Copenhagen, Denmark, and first published as a preprint in 1998.

<span class="mw-page-title-main">Equal-area projection</span> Type of map projection

In cartography, an equivalent, authalic, or equal-area projection is a map projection that preserves relative area measure between any and all map regions. Equivalent projections are widely used for thematic maps showing scenario distribution such as population, farmland distribution, forested areas, and so forth, because an equal-area map does not change apparent density of the phenomenon being mapped.

References

  1. 1 2 3 4 Sahr, Kevin; White, Denis; Kimerling, A.J. (2003). "Geodesic discrete global grid systems" (PDF). Cartography and Geographic Information Science. 30 (2): 121–134. doi:10.1559/152304003100011090. S2CID   16549179.
  2. 1 2 Sahr, Kevin; White, Denis; Kimerling, A.J. (18 March 1997), "A Proposed Criteria for Evaluating Discrete Global Grids", Draft Technical Report, Corvallis, Oregon: Oregon State University, archived from the original on 3 March 2016, retrieved 10 September 2014
  3. Geoffrey Dutton. "What's the big deal about global hierarchical tessellation?". quote: "a few prototype systems that are either hierarchical tessellations, global tessellations, or both".
  4. "Overview".
  5. "Global 30 Arc-Second Elevation (GTOPO30)". USGS. Archived from the original on July 10, 2017. Retrieved October 8, 2015.
  6. "Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010)". USGS. Retrieved October 8, 2015.
  7. Arakawa, Akio; Lamb, Vivian R. (1977). "Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model". General Circulation Models of the Atmosphere. Methods in Computational Physics: Advances in Research and Applications. Vol. 17. pp. 173–265. doi:10.1016/B978-0-12-460817-7.50009-4. ISBN   978-0-12-460817-7.
  8. "Research Institute for World Grid Squares". Yokohama City University. Retrieved November 21, 2017.
  9. Snyder, J.P. (1992). "An equal-area map projection for polyhedral globes". Cartographica. 29 (1): 10–21. doi:10.3138/27h7-8k88-4882-1752.
  10. Barnes, Richard (2019). "Optimal orientations of discrete global grids and the Poles of Inaccessibility". International Journal of Digital Earth. 13 (7): 803–816. doi:10.1080/17538947.2019.1576786. S2CID   134622203.
  11. Martin Suess, Pedro Matos (2004). "Processing of SMOS level 1C data onto a discrete global grid". IEEE International IEEE International IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004. Vol. 3. pp. 1914–1917. doi:10.1109/IGARSS.2004.1370716. ISBN   978-0-7803-8742-3. S2CID   7267254.
  12. "Global Grid Systems Insight". Global Grid Systems. Archived from the original on November 16, 2020. Retrieved October 8, 2015.
  13. "LAMBDA – COBE Quadrilateralized Spherical Cube".
  14. Dutton, Geoffrey H. (1999). A Hierarchical Coordinate System for Geoprocessing and Cartography. Lecture Notes in Earth Sciences. Vol. 79. doi:10.1007/BFb0011617. ISBN   978-3-540-64980-9.[ page needed ]
  15. Snyder, Van (10 August 2016). "Quaternary triangular mesh: a hierarchical coordinate system for geoprocessing and cartography". hdl: 2014/46916 .{{cite journal}}: Cite journal requires |journal= (help)
  16. "HEALPix Background Purpose". NASA Jet Propulsion Laboratory. Retrieved October 8, 2015..
  17. "S2 Cells". Archived from the original on 2020-10-20. Retrieved 2018-09-06.
  18. "HTM Overview".
  19. "ADASS 2003 Conference Proceedings".
  20. "S2 Geometry".
  21. "Overview". s2geometry.io. Retrieved 2018-05-11.
  22. Kreiss, Sven (2016-07-27). "S2 cells and space-filling curves: Keys to building better digital map tools for cities". Medium. Retrieved 2018-05-11.
  23. "S2 Cell Statistics".
  24. 1 2 Open Geospatial Consortium (2017), "Topic 21: Discrete Global Grid Systems Abstract Specification". Document 15-104r5 version 1.0.
  25. Section 6.1, "DGGS Core Data Model Overview", of the DGGS standard
  26. Sadourny, R.; Arakawa, A.; Mintz, Y. (1968). "Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere". Monthly Weather Review. 96 (6): 351–356. Bibcode:1968MWRv...96..351S. CiteSeerX   10.1.1.395.2717 . doi:10.1175/1520-0493(1968)096<0351:iotnbv>2.0.co;2.
  27. Williamson, D.L. (1968). "Integration of the barotropic vorticity equation on a spherical geodesic grid". Tellus. 20 (4): 642–653. doi:10.1111/j.2153-3490.1968.tb00406.x.
  28. Kleiner, Andreas; Brassel, Kurt E. (1986). "Hierarchical grid structures for static geographic data bases" (PDF). In Blakemore, Michael (ed.). Auto Carto London: proceedings International Conference on the Acquisition, Management and Presentation of Spatial Data, 14–19 September 1986. Auto Carto London. pp. 485–496. ISBN   978-0-85406-312-3. OCLC   898826374.
  29. Yan, Jin; Song, Xiao; Gong, Guanghong (2016). "Averaged ratio between complementary profiles for evaluating shape distortions of map projections and spherical hierarchical tessellations". Computers & Geosciences. 87: 41–55. Bibcode:2016CG.....87...41Y. doi:10.1016/j.cageo.2015.11.009.
  30. "What3words: Find and share very precise locations via Google Maps with just 3 words". 2013-07-02. Retrieved 8 July 2014.
  31. "Open Location Code is a library to generate short codes that can be used like street addresses, for places where street addresses don't exist.: Google/open-location-code". GitHub . 2019-02-18.
  32. "Computational geometry and spatial indexing on the sphere: Google/s2geometry". GitHub . 2019-02-18.