Minimum bounding box

Last updated
A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions) Bounding box.png
A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions)

In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure are used, the minimum box is usually called accordingly, e.g., "minimum-perimeter bounding box".

Contents

The minimum bounding box of a point set is the same as the minimum bounding box of its convex hull, a fact which may be used heuristically to speed up computation. [1]

In the two-dimensional case it is called the minimum bounding rectangle .

Axis-aligned minimum bounding box

The axis-aligned minimum bounding box (or AABB) for a given point set is its minimum bounding box subject to the constraint that the edges of the box are parallel to the (Cartesian) coordinate axes. It is the Cartesian product of N intervals each of which is defined by the minimal and maximal value of the corresponding coordinate for the points in S.

Axis-aligned minimal bounding boxes are used as an approximate location of an object in question and as a very simple descriptor of its shape. For example, in computational geometry and its applications when it is required to find intersections in the set of objects, the initial check is the intersections between their MBBs. Since it is usually a much less expensive operation than the check of the actual intersection (because it only requires comparisons of coordinates), it allows quickly excluding checks of the pairs that are far apart.

Arbitrarily oriented minimum bounding box

The arbitrarily oriented minimum bounding box is the minimum bounding box, calculated subject to no constraints as to the orientation of the result. Minimum bounding box algorithms based on the rotating calipers method can be used to find the minimum-area or minimum-perimeter bounding box of a two-dimensional convex polygon in linear time, and of a three-dimensional point set in the time it takes to construct its convex hull followed by a linear-time computation. [1] A three-dimensional rotating calipers algorithm can find the minimum-volume arbitrarily-oriented bounding box of a three-dimensional point set in cubic time. [2] Matlab implementations of the latter as well as the optimal compromise between accuracy and CPU time are available. [3]

Object-oriented minimum bounding box

In the case where an object has its own local coordinate system, it can be useful to store a bounding box relative to these axes, which requires no transformation as the object's own transformation changes.

Digital image processing

In digital image processing, the bounding box is merely the coordinates of the rectangular border that fully encloses a digital image when it is placed over a page, a canvas, a screen or other similar bidimensional background.

See also

Related Research Articles

<span class="mw-page-title-main">Convex hull</span> Smallest convex set containing a given set

In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.

Collision detection is the computational problem of detecting an intersection of two or more spatial objects, commonly computer graphics objects. It has applications in various computing fields, primarily in computer graphics, computer games, computer simulations, robotics and computational physics. Collision detection is a classic problem of computational geometry. Collision detection algorithms can be divided into operating on 2D or 3D spatial objects.

Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity.

<span class="mw-page-title-main">Bounding volume</span> Closed volume that completely contains the union of a set of objects

In computer graphics and computational geometry, a bounding volume for a set of objects is a closed region that completely contains the union of the objects in the set. Bounding volumes are used to improve the efficiency of geometrical operations, such as by using simple regions, having simpler ways to test for overlap.

<span class="mw-page-title-main">Bounding sphere</span> Sphere that contains a set of objects

In mathematics, given a non-empty set of objects of finite extension in -dimensional space, for example a set of points, a bounding sphere, enclosing sphere or enclosing ball for that set is a -dimensional solid sphere containing all of these objects.

<span class="mw-page-title-main">Convex polytope</span> Convex hull of a finite set of points in a Euclidean space

A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.

<span class="mw-page-title-main">Minimum bounding rectangle</span> Smallest rectangle which encloses some planar set of points

In computational geometry, the minimum bounding rectangle (MBR), also known as bounding box (BBOX) or envelope, is an expression of the maximum extents of a two-dimensional object (e.g. point, line, polygon) or set of objects within its x-y coordinate system; in other words min(x), max(x), min(y), max(y). The MBR is a 2-dimensional case of the minimum bounding box.

<span class="mw-page-title-main">Rectilinear polygon</span> Polygon in which all angles are right

A rectilinear polygon is a polygon all of whose sides meet at right angles. Thus the interior angle at each vertex is either 90° or 270°. Rectilinear polygons are a special case of isothetic polygons.

Proximity problems is a class of problems in computational geometry which involve estimation of distances between geometric objects.

<span class="mw-page-title-main">Boxicity</span> Smallest dimension where a graph can be represented as an intersection graph of boxes

In graph theory, boxicity is a graph invariant, introduced by Fred S. Roberts in 1969.

In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, etc. of the box.

<span class="mw-page-title-main">Smallest-circle problem</span> Finding the smallest circle that contains all given points

The smallest-circle problem is a computational geometry problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane. The corresponding problem in n-dimensional space, the smallest bounding sphere problem, is to compute the smallest n-sphere that contains all of a given set of points. The smallest-circle problem was initially proposed by the English mathematician James Joseph Sylvester in 1857.

<span class="mw-page-title-main">Rotating calipers</span>

In computational geometry, the method of rotating calipers is an algorithm design technique that can be used to solve optimization problems including finding the width or diameter of a set of points.

In the study of algorithms, an LP-type problem is an optimization problem that shares certain properties with low-dimensional linear programs and that may be solved by similar algorithms. LP-type problems include many important optimization problems that are not themselves linear programs, such as the problem of finding the smallest circle containing a given set of planar points. They may be solved by a combination of randomized algorithms in an amount of time that is linear in the number of elements defining the problem, and subexponential in the dimension of the problem.

<span class="mw-page-title-main">Opaque set</span> Shape that blocks all lines of sight

In discrete geometry, an opaque set is a system of curves or other set in the plane that blocks all lines of sight across a polygon, circle, or other shape. Opaque sets have also been called barriers, beam detectors, opaque covers, or opaque forests. Opaque sets were introduced by Stefan Mazurkiewicz in 1916, and the problem of minimizing their total length was posed by Frederick Bagemihl in 1959.

A geometric separator is a line that partitions a collection of geometric shapes into two subsets, such that proportion of shapes in each subset is bounded, and the number of shapes that do not belong to any subset is small.

In geometry, a fat object is an object in two or more dimensions, whose lengths in the different dimensions are similar. For example, a square is fat because its length and width are identical. A 2-by-1 rectangle is thinner than a square, but it is fat relative to a 10-by-1 rectangle. Similarly, a circle is fatter than a 1-by-10 ellipse and an equilateral triangle is fatter than a very obtuse triangle.

In geometry, a covering of a polygon is a set of primitive units whose union equals the polygon. A polygon covering problem is a problem of finding a covering with a smallest number of units for a given polygon. This is an important class of problems in computational geometry. There are many different polygon covering problems, depending on the type of polygon being covered. An example polygon covering problem is: given a rectilinear polygon, find a smallest set of squares whose union equals the polygon.

In geometry, a partition of a polygon is a set of primitive units, which do not overlap and whose union equals the polygon. A polygon partition problem is a problem of finding a partition which is minimal in some sense, for example a partition with a smallest number of units or with units of smallest total side-length.

References

  1. 1 2 Toussaint, G. T. (1983). "Solving geometric problems with the rotating calipers" (PDF). Proc. MELECON '83, Athens.
  2. Joseph O'Rourke (1985), "Finding minimal enclosing boxes", Parallel Programming, Springer Netherlands
  3. Chang, Chia-Tche; Gorissen, Bastien; Melchior, Samuel (2018). "Matlab implementation of several minimum-volume bounding box algorithms". GitHub ..