This article needs additional citations for verification .(February 2009) |
UML diagram types |
---|
Structural UML diagrams |
Behavioral UML diagrams |
In software engineering, a class diagram [1] in the Unified Modeling Language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, operations (or methods), and the relationships among objects.
The class diagram is the main building block of object-oriented modeling. It is used for general conceptual modeling of the structure of the application, and for detailed modeling, translating the models into programming code. Class diagrams can also be used for data modeling. [2] The classes in a class diagram represent both the main elements, interactions in the application, and the classes to be programmed.
In the diagram, classes are represented with boxes that contain three compartments:
In the design of a system, a number of classes are identified and grouped together in a class diagram that helps to determine the static relations between them. In detailed modeling, the classes of the conceptual design are often split into subclasses. [3]
In order to further describe the behavior of systems, these class diagrams can be complemented by a state diagram or UML state machine. [4]
UML provides mechanisms to represent class members, such as attributes and methods, and additional information about them like constructors.
To specify the visibility of a class member (i.e. any attribute or method), these notations must be placed before the members' name: [5]
+ | Public |
- | Private |
# | Protected |
~ | Package |
A derived property is a property whose value (or values) is produced or computed from other information, for example, by using values of other properties.
A derived property is shown with its name preceded by a forward slash '/'. [6]
The UML specifies two types of scope for members: instance and class. The class name appears an underlined concatenation of the instance name (if any), a colon (':'), and the actual class name. [1]
To indicate a classifier scope for a member, its name must be underlined. Otherwise, instance scope is assumed by default.
A relationship is a general term covering the specific types of logical connections found on class and object diagrams. UML defines the following relationships:
A dependency is a type of association where there is a semantic connection between dependent and independent model elements. [7] It exists between two elements if changes to the definition of one element (the server or target) may cause changes to the other (the client or source). This association is uni-directional. A dependency is displayed as a dashed line with an open arrow that points from the client to the supplier.
An association represents a family of structural links. A binary association is represented as a solid line between two classes. A reflexive association is a binary association between the class and itself. An association between more than two classes is represented as a diamond connected with a solid line to each of the associated classes. An association between three classes is a ternary association. An association between more classes is called an n-ary association.
An association can be named, and the ends of an association can be adorned with role names, aggregation indicators, multiplicity, visibility, navigability and other properties. The dot notation for example allows to represent with a little dot on the side of one class that the association end is owned by the other side. [8]
There are three types of association: simple association, shared aggregation, composite aggregation (composition). An association can be navigable in one or more directions. The navigability does not have to be explicitly specified. An open-headed arrow on the side of a class documents that the class can be reached efficiently at run-time from the opposite side. A unidirectional navigation is shown with a little cross on the association line on the side of the class that cannot be reached. For instance, a flight class is associated with a plane class bi-directionally.
Aggregation is a variant of the "has a" association relationship; aggregation is more specific than association. It is an association that represents a part-whole or part-of relationship. As shown in the image, a Professor 'has a' class to teach. As a type of association, an aggregation can be named and have the same adornments that an association can. However, an aggregation may not involve more than two classes; it must be a binary association. Furthermore, there is hardly a difference between aggregations and associations during implementation, and the diagram may skip aggregation relations altogether. [9]
Aggregation can occur when a class is a collection or container of other classes, but the contained classes do not have a strong lifecycle dependency on the container. The contents of the container still exist when the container is destroyed.
In UML, it is graphically represented as a hollow diamond shape on the containing class with a single line that connects it to the contained class. The aggregate is semantically an extended object that is treated as a unit in many operations, although physically it is made of several lesser objects.
The composite aggregation (colloquially called composition) relationship is a stronger form of aggregation where the aggregate controls the lifecycle of the elements it aggregates. The graphical representation is a filled diamond shape on the containing class end of the line that connect contained class(es) to the containing class.
Thus the aggregation relationship is often "catalog" containment to distinguish it from composition's "physical" containment. UML 2 does not specify any semantic for the aggregation compared to the simple association.
The generalization relationship—also known as the inheritance or "is a" relationship—captures the idea of one class, the so-called subclass, being a specialized form of the other (the superclass , super type, or base class). Where this relationship holds, the superclass is considered a generalization of the subclass. In practice, this means that any instance of the subclass is also an instance of the superclass. An exemplary tree of generalizations of this form is found in biological classification, where, for instance, human is a subclass of simian, which is a subclass of mammal, and so on. The relationship is most easily understood by the phrase “an A is a B” (a human is a mammal, a mammal is an animal).
The UML graphical representation of a generalization is a hollow triangle shape on the superclass end of the line (or tree of lines) that connects it to one or more subtypes.
symbolic of realization (subclass) _______▻ (superclass)
Dual to generalization is the specialization relationship. Other terms for a (specialized) subclass of a more general superclass include subtype, derived class, derived type, inheriting class, inheriting type, child, and child class.
Note that this relationship, though similar to the biological parent–child relationship, is distinct from it. The use of the terms parent and child is suggestive, but can be misleading.
Generalization can only be shown on class diagrams and on use case diagrams.
In UML modelling, a realization relationship is a relationship between two model elements, in which one model element (the client) realizes (implements or executes) the behavior that the other model element (the supplier) specifies.
The UML graphical representation of a Realization is a hollow triangle shape on the interface end of the dashed line (or tree of lines) that connects it to one or more implementers. A plain arrow head is used on the interface end of the dashed line that connects it to its users. In component diagrams, the ball-and-socket graphic convention is used (implementors expose a ball or lollipop, whereas users show a socket). Realizations can only be shown on class or component diagrams. A realization is a relationship between classes, interfaces, components and packages that connects a client element with a supplier element. A realization relationship between classes/components and interfaces shows that the class/component realizes the operations offered by the interface.
symbolic of realization (implementer) -------▻ (interface)
Dependency can be a weaker form of bond that indicates that one class depends on another because it uses it at some point in time. One class depends on another if the independent class is a parameter variable or local variable of a method of the dependent class. Sometimes the relationship between two classes is very weak. They are not implemented with member variables at all. Rather they might be implemented as member function arguments.
This association relationship indicates that (at least) one of the two related classes make reference to the other. This relationship is usually described as "A has a B" (a mother cat has kittens, kittens have a mother cat).
The UML representation of an association is a line connecting the two associated classes. At each end of the line there is optional notation. For example, we can indicate, using an arrowhead that the pointy end is visible from the arrow tail. We can indicate ownership by the placement of a ball, the role the elements of that end play by supplying a name for the role, and the multiplicity of instances of that entity (the range of number of objects that participate in the association from the perspective of the other end).
0 | No instances (rare) |
0..1 | No instances, or one instance |
1 | Exactly one instance |
1..1 | Exactly one instance |
0..* | Zero or more instances |
* | Zero or more instances |
1..* | One or more instances |
Entity classes model long-lived information handled by the system, and sometimes the behavior associated with the information. They should not be identified as database tables or other data-stores.
They are drawn as circles with a short line attached to the bottom of the circle. Alternatively, they can be drawn as normal classes with the «entity» stereotype notation above the class name.
In object-oriented programming, a class defines the shared aspects of objects created from the class. The capabilities of a class differ between programming languages, but generally the shared aspects consist of state (variables) and behavior (methods) that are each either associated with a particular object or with all objects of that class.
The unified modeling language (UML) is a general-purpose visual modeling language that is intended to provide a standard way to visualize the design of a system.
The object-modeling technique (OMT) is an object modeling approach for software modeling and designing. It was developed around 1991 by Rumbaugh, Blaha, Premerlani, Eddy and Lorensen as a method to develop object-oriented systems and to support object-oriented programming. OMT describes object model or static structure of the system.
In database design, object-oriented programming and design, has-a is a composition relationship where one object "belongs to" another object, and behaves according to the rules of ownership. In simple words, has-a relationship in an object is called a member field of an object. Multiple has-a relationships will combine to form a possessive hierarchy.
In knowledge representation and ontology components, including for object-oriented programming and design, is-a is a subsumptive relationship between abstractions, wherein one class A is a subclass of another class B . In other words, type A is a subtype of type B when A's specification implies B's specification. That is, any object that satisfies A's specification also satisfies B's specification, because B's specification is weaker.
In object-oriented programming, a metaclass is a class whose instances are classes themselves. Unlike ordinary classes, which define the behaviors of objects, metaclasses specify the behaviors of classes and their instances. Not all object-oriented programming languages support the concept of metaclasses. For those that do, the extent of control metaclasses have over class behaviors varies. Metaclasses are often implemented by treating classes as first-class citizens, making a metaclass an object that creates and manages these classes. Each programming language adheres to its own metaobject protocol, which are the rules that determine interactions among objects, classes, and metaclasses. Metaclasses are utilized to automate code generation and to enhance framework development.
A stereotype is one of three types of extensibility mechanisms in the Unified Modeling Language (UML), the other two being tags and constraints. They allow designers to extend the vocabulary of UML in order to create new model elements, derived from existing ones, but that have specific properties that are suitable for a particular domain or otherwise specialized usage. The nomenclature is derived from the original meaning of stereotype, used in printing. For example, when modeling a network you might need to have symbols for representing routers and hubs. By using stereotyped nodes you can make these things appear as primitive building blocks.
In computer science, object composition and object aggregation are closely related ways to combine objects or data types into more complex ones. In conversation, the distinction between composition and aggregation is often ignored. Common kinds of compositions are objects used in object-oriented programming, tagged unions, sets, sequences, and various graph structures. Object compositions relate to, but are not the same as, data structures.
Object-oriented analysis and design (OOAD) is a technical approach for analyzing and designing an application, system, or business by applying object-oriented programming, as well as using visual modeling throughout the software development process to guide stakeholder communication and product quality.
In object-oriented programming, inheritance is the mechanism of basing an object or class upon another object or class, retaining similar implementation. Also defined as deriving new classes from existing ones such as super class or base class and then forming them into a hierarchy of classes. In most class-based object-oriented languages like C++, an object created through inheritance, a "child object", acquires all the properties and behaviors of the "parent object", with the exception of: constructors, destructors, overloaded operators and friend functions of the base class. Inheritance allows programmers to create classes that are built upon existing classes, to specify a new implementation while maintaining the same behaviors, to reuse code and to independently extend original software via public classes and interfaces. The relationships of objects or classes through inheritance give rise to a directed acyclic graph.
A package diagram in the Unified Modeling Language depicts "specializations for Models and for Profiles that organize extensions to UML."
In Unified Modeling Language (UML), a component diagram depicts how components are wired together to form larger components or software systems. They are used to illustrate the structure of arbitrarily complex systems.
Glossary of Unified Modeling Language (UML) terms provides a compilation of terminology used in all versions of UML, along with their definitions. Any notable distinctions that may exist between versions are noted with the individual entry it applies to.
Executable UML is both a software development method and a highly abstract software language. It was described for the first time in 2002 in the book "Executable UML: A Foundation for Model-Driven Architecture". The language "combines a subset of the UML graphical notation with executable semantics and timing rules." The Executable UML method is the successor to the Shlaer–Mellor method.
MagicDraw is a proprietary visual UML, SysML, BPMN, and UPDM modeling tool with team collaboration support.
In object-oriented programming, an object diagram in the Unified Modeling Language (UML) is a diagram that shows a complete or partial view of the structure of a modeled system at a specific time.
Composite structure diagram in the Unified Modeling Language (UML) is a type of static structure diagram that shows the internal structure of a class and the collaborations that this structure makes possible.
In the Unified Modeling Language (UML), a Dependency is "a Relationship that signifies that a single model Element or a set of model Elements requires other model Elements for their specification or implementation." "This means that the complete semantics of the client Element(s) are either semantically or structurally dependent on the definition of the supplier Element(s)." Two or more elements in this relationship are called tuples.
Metadata modeling is a type of metamodeling used in software engineering and systems engineering for the analysis and construction of models applicable to and useful for some predefined class of problems.
The enhanced entity–relationship (EER) model in computer science is a high-level or conceptual data model incorporating extensions to the original entity–relationship (ER) model, used in the design of databases.