AuthaGraph projection

Last updated
An approximation of the AuthaGraph projection Projection AuthaGraph.png
An approximation of the AuthaGraph projection

AuthaGraph is an approximately equal-area world map projection invented by Japanese architect Hajime Narukawa [1] in 1999. [2] The map is made by equally dividing a spherical surface into 96 triangles, transferring it to a tetrahedron while maintaining area proportions, and unfolding it in the form of a rectangle: it is a polyhedral map projection. The map substantially preserves sizes and shapes of all continents and oceans while it reduces distortions of their shapes, as inspired by the Dymaxion map. The projection does not have some of the major distortions of the Mercator projection, like the expansion of countries in far northern latitudes, and allows for Antarctica to be displayed accurately and in whole. [3] Triangular world maps are also possible using the same method. The name is derived from "authalic" and "graph". [3]

Contents

The method used to construct the projection ensures that the 96 regions of the sphere that are used to define the projection each have the correct area, but the projection does not qualify as equal-area because the method does not control area at infinitesimal scales or even within those regions.

The AuthaGraph world map can be tiled in any direction without visible seams. From this map-tiling, a new world map with triangular, rectangular or a parallelogram's outline can be framed with various regions at its center. This tessellation allows for depicting temporal themes, such as a satellite's long-term movement around the Earth in a continuous line. [4]

In 2011 the AuthaGraph mapping projection was selected by the Japanese National Museum of Emerging Science and Innovation (Miraikan) as its official mapping tool. [5] In October 2016, the AuthaGraph mapping projection won the 2016 Good Design Grand Award from the Japan Institute of Design Promotion. [6]

In April 2024, the Nebraska Legislature passed a bill that, if signed, would require public schools to use only maps based on the Gall–Peters projection, a similar cylindrical equal-area projection, or the AuthaGraph projection, beginning in the 2024–2025 school year. [7] [8]

See also

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Cube</span> Solid object with six equal square faces

In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets, or sides, with three meeting at each vertex. Viewed from a corner, it is a hexagon and its net is usually depicted as a cross.

<span class="mw-page-title-main">Gall–Peters projection</span> Cylindrical equal-area map projection

The Gall–Peters projection is a rectangular, equal-area map projection. Like all equal-area projections, it distorts most shapes. It is a cylindrical equal-area projection with latitudes 45° north and south as the regions on the map that have no distortion. The projection is named after James Gall and Arno Peters.

<span class="mw-page-title-main">Map</span> Symbolic depiction of relationships

A map is a symbolic depiction emphasizing relationships between elements of some space, such as objects, regions, or themes.

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Map projection</span> Systematic representation of the surface of a sphere or ellipsoid onto a plane

In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography.

<span class="mw-page-title-main">Dymaxion map</span> Polyhedral compromise map projection

The Dymaxion map or Fuller map is a projection of a world map onto the surface of an icosahedron, which can be unfolded and flattened to two dimensions. The flat map is heavily interrupted in order to preserve shapes and sizes.

<span class="mw-page-title-main">Truncated tetrahedron</span> Archimedean solid with 8 faces

In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges. It can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length.

<span class="mw-page-title-main">Truncated cube</span> Archimedean solid with 14 regular faces

In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces, 36 edges, and 24 vertices.

<span class="mw-page-title-main">Miraikan</span> Science and technology museum in Odaiba, Tokyo, Japan

The National Museum of Emerging Science and Innovation, simply known as the Miraikan, is a museum created by Japan's Science and Technology Agency.

<span class="mw-page-title-main">Quadrilateralized spherical cube</span> Polyhedral equal-area map projection

In mapmaking, a quadrilateralized spherical cube, or quad sphere for short, is an equal-area polyhedral map projection and discrete global grid scheme for data collected on a spherical surface. It was first proposed in 1975 by Chan and O'Neill for the Naval Environmental Prediction Research Facility. This scheme is also often called the COBE sky cube, because it was designed to hold data from the Cosmic Background Explorer (COBE) project.

<span class="mw-page-title-main">Waterman butterfly projection</span> Polyhedral compromise map projection

The Waterman "Butterfly" World Map is a map projection created by Steve Waterman. Waterman first published a map in this arrangement in 1996. The arrangement is an unfolding of a polyhedral globe with the shape of a truncated octahedron, evoking the butterfly map principle first developed by Bernard J.S. Cahill (1866–1944) in 1909. Cahill and Waterman maps can be shown in various profiles, typically linked at the north Pacific or north Atlantic oceans.

In graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations. Solving the equations geometrically produces a planar embedding. Tutte's spring theorem, proven by W. T. Tutte, states that this unique solution is always crossing-free, and more strongly that every face of the resulting planar embedding is convex. It is called the spring theorem because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph.

<span class="mw-page-title-main">Cahill–Keyes projection</span> Polyhedral compromise map projection

The Cahill–Keyes projection is a polyhedral compromise map projection first proposed by Gene Keyes in 1975. The projection is a refinement of an earlier 1909 projection by Bernard Cahill. The projection was designed to achieve a number of desirable characteristics, namely symmetry of component maps (octants), scalability allowing the map to continue to work well even at high resolution, uniformity of geocells, metric-based joining edges, minimized distortion compared to a globe, and an easily understood orientation to enhance general usability and teachability.

<span class="mw-page-title-main">Discrete global grid</span> Partition of Earths surface into subdivided cells

A discrete global grid (DGG) is a mosaic that covers the entire Earth's surface. Mathematically it is a space partitioning: it consists of a set of non-empty regions that form a partition of the Earth's surface. In a usual grid-modeling strategy, to simplify position calculations, each region is represented by a point, abstracting the grid as a set of region-points. Each region or region-point in the grid is called a cell.

Hajime Narukawa is a Japanese architect. He was born in 1971 in Kawasaki, Kanagawa and lives and practices in Tokyo.

<span class="mw-page-title-main">Lee conformal world in a tetrahedron</span> Polyhedral conformal map projection

The Lee conformal world in a tetrahedron is a polyhedral, conformal map projection that projects the globe onto a tetrahedron using Dixon elliptic functions. It is conformal everywhere except for the four singularities at the vertices of the polyhedron. Because of the nature of polyhedra, this map projection can be tessellated infinitely in the plane. It was developed by L. P. Lee in 1965.

<span class="mw-page-title-main">Interruption (map projection)</span>

In map projections, an interruption is any place where the globe has been split. All map projections are interrupted at at least one point. Typical world maps are interrupted along an entire meridian. In that typical case, the interruption forms an east/west boundary, even though the globe has no boundaries.

<span class="mw-page-title-main">Polyhedral map projection</span> Type of map projection

A polyhedral map projection is a map projection based on a spherical polyhedron. Typically, the polyhedron is overlaid on the globe, and each face of the polyhedron is transformed to a polygon or other shape in the plane. The best-known polyhedral map projection is Buckminster Fuller's Dymaxion map. When the spherical polyhedron faces are transformed to the faces of an ordinary polyhedron instead of laid flat in a plane, the result is a polyhedral globe.

References

  1. "鳴川肇 – Hajime Narukawa". ist2010.jp. Archived from the original on 5 November 2016. Retrieved 7 February 2019.
  2. Otake, Tomoko (17 July 2011). "The world according to AuthaGraph". The Japan Times . Retrieved 1 June 2021.
  3. 1 2 "AuthaGraph オーサグラフ 世界地図". Archived from the original on 13 December 2018. Retrieved 7 February 2019.
  4. "ICC Online – Archive – 2009 – Open Space 2009 – Works". ntticc.or.jp. Retrieved 7 February 2019.
  5. "The National Museum of Emerging Science and Innovation (Miraikan)". jst.go.jp. Archived from the original on 20 July 2019. Retrieved 7 February 2019.
  6. "World Map Projection [AuthaGraph World Map] – Good Design Grand Award" . Retrieved 7 February 2019.
  7. Wendling, Zach (April 11, 2024). "More than 100 bills sent to Nebraska Gov. Pillen for approval in legislative voting spree". Nebraska Examiner . States Newsroom.
  8. Section 90, Legislative Bill No. 1329 of 2024 (PDF). Nebraska Legislature. pp. 102–103.