The **Craig retroazimuthal** map projection was created by James Ireland Craig in 1909. It is a modified cylindrical projection. As a retroazimuthal projection, it preserves directions from everywhere to one location of interest that is configured during construction of the projection. The projection is sometimes known as the ** Mecca projection** because Craig, who had worked in Egypt as a cartographer, created it to help Muslims find their qibla. In such maps, Mecca is the configurable location of interest.^{ [1] }

Given latitude *φ* to plot, latitude *φ*_{0} of the fixed location of interest, longitude *λ* to plot, and the longitude *λ*_{0} of the fixed location of interest, the projection is defined by:

But when *λ* − *λ*_{0} = 0, *y* above is undefined, so instead use the ratio's continuous completion:^{ [2] }

The **Mercator projection** is a cylindrical map projection presented by Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for navigation because of its unique property of representing any course of constant bearing as a straight segment. Such a course, known as a rhumb or, mathematically, a loxodrome, is preferred by navigators because the ship can sail in a constant compass direction to reach its destination, eliminating difficult and error-prone course corrections. Linear scale is constant on the Mercator in every direction around any point, thus preserving the angles and the shapes of small objects and fulfilling the conditions of a conformal map projection. As a side effect, the Mercator projection inflates the size of objects away from the equator. This inflation is very small near the equator, but accelerates with latitude to become infinite at the poles. So, for example, landmasses such as Greenland and Antarctica appear far larger than they actually are relative to landmasses near the equator, such as Central Africa.

In navigation, a **rhumb line**, **rhumb**, or **loxodrome** is an arc crossing all meridians of longitude at the same angle, that is, a path with constant bearing as measured relative to true or magnetic north.

The use of **orthographic projection in cartography** dates back to antiquity. Like the stereographic projection and gnomonic projection, orthographic projection is a perspective projection, in which the sphere is projected onto a tangent plane or secant plane. The *point of perspective* for the orthographic projection is at infinite distance. It depicts a hemisphere of the globe as it appears from outer space, where the horizon is a great circle. The shapes and areas are distorted, particularly near the edges.

The **azimuthal equidistant projection** is an azimuthal map projection. It has the useful properties that all points on the map are at proportionally correct distances from the center point, and that all points on the map are at the correct azimuth (direction) from the center point. A useful application for this type of projection is a polar projection which shows all meridians as straight, with distances from the pole represented correctly. The flag of the United Nations contains an example of a polar azimuthal equidistant projection.

The **equirectangular projection** is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100. The projection maps meridians to vertical straight lines of constant spacing, and circles of latitude to horizontal straight lines of constant spacing. The projection is neither equal area nor conformal. Because of the distortions introduced by this projection, it has little use in navigation or cadastral mapping and finds its main use in thematic mapping. In particular, the plate carrée has become a standard for global raster datasets, such as Celestia and NASA World Wind, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth.

The **Bonne projection** is a pseudoconical equal-area map projection, sometimes called a **dépôt de la guerre**, **modified Flamsteed**, or a **Sylvanus** projection. Although named after Rigobert Bonne (1727–1795), the projection was in use prior to his birth, in 1511 by Sylvano, Honter in 1561, De l'Isle before 1700 and Coronelli in 1696. Both Sylvano and Honter's usages were approximate, however, and it is not clear they intended to be the same projection.

The **Bottomley map projection** is an equal area map projection defined as:

The **Littrow projection** is a map projection developed by Joseph Johann von Littrow in 1833. It is the only conformal, retroazimuthal map projection. As a retroazimuthal projection, the Littrow shows directions, or azimuths, correctly from any point to the center of the map.

A **Lambert conformal conic projection** (**LCC**) is a conic map projection used for aeronautical charts, portions of the State Plane Coordinate System, and many national and regional mapping systems. It is one of seven projections introduced by Johann Heinrich Lambert in his 1772 publication *Anmerkungen und Zusätze zur Entwerfung der Land- und Himmelscharten*.

The **Albers equal-area conic projection**, or **Albers projection**, is a conic, equal area map projection that uses two standard parallels. Although scale and shape are not preserved, distortion is minimal between the standard parallels.

The **van der Grinten projection** is a compromise map projection, which means that it is neither equal-area nor conformal. Unlike perspective projections, the van der Grinten projection is an arbitrary geometric construction on the plane. Van der Grinten projects the entire Earth into a circle. It largely preserves the familiar shapes of the Mercator projection while modestly reducing Mercator's distortion. Polar regions are subject to extreme distortion.

**Space-oblique Mercator projection** is a map projection devised in the 1970s for preparing maps from Earth-survey satellite data. It is a generalization of the oblique Mercator projection that incorporates the time evolution of a given satellite ground track to optimize its representation on the map. The oblique Mercator projection, on the other hand, optimizes for a given geodesic.

The **Hammer projection** is an equal-area map projection described by Ernst Hammer in 1892. Using the same 2:1 elliptical outer shape as the Mollweide projection, Hammer intended to reduce distortion in the regions of the outer meridians, where it is extreme in the Mollweide.

The **Cassini projection** is a map projection described by César-François Cassini de Thury in 1745. It is the transverse aspect of the equirectangular projection, in that the globe is first rotated so the central meridian becomes the "equator", and then the normal equirectangular projection is applied. Considering the earth as a sphere, the projection is composed of the operations:

In cartography, the **cylindrical equal-area projection** is a family of cylindrical, equal-area map projections.

The **Hammer retroazimuthal projection** is a modified azimuthal proposed by Ernst Hermann Heinrich Hammer in 1910. As a retroazimuthal projection, azimuths (directions) are correct from any point to the designated center point. Additionally, all distances from the center of the map are proportional to what they are on the globe. In whole-world presentation, the back and front hemispheres overlap, making the projection a non-injective function. The back hemisphere can be rotated 180° to avoid overlap, but in this case, any azimuths measured from the back hemisphere must be corrected.

The **armadillo projection** is a map projection used for world maps. It is neither conformal nor equal-area but instead affords a view evoking a perspective projection while showing most of the globe instead of the half or less that a perspective would. The projection was presented in 1943 by Erwin Raisz (1893–1968) as part of a series of "orthoapsidal" projections, which are perspectives of the globe projected onto various surfaces. This one in the series has the globe projected onto half a torus. Raisz singled it out and named it the "armadillo" projection.

The **American polyconic** map projection is a map projection used for maps of the United States and regions of the United States beginning early in the 19th century. It belongs to the polyconic projection class, which consists of map projections whose parallels are non-concentric circular arcs except for the equator, which is straight. Often the American polyconic is simply called the **polyconic projection**.

The **rectangular polyconic** projection is a map projection was first mentioned in 1853 by the U.S. Coast Survey, where it was developed and used for portions of the U.S. exceeding about one square degree. It belongs to the polyconic projection class, which consists of map projections whose parallels are non-concentric circular arcs except for the equator, which is straight. Sometimes the rectangular polyconic is called the **War Office** projection due to its use by the British War Office for topographic maps. It is not used much these days, with practically all military grid systems having moved onto conformal projection systems, typically modeled on the transverse Mercator projection.

The **Eckert-Greifendorff projection** is an equal-area map projection described by Max Eckert-Greifendorff in 1935. Unlike his previous six projections, It is not pseudocylindrical.

- ↑ Lev M Bugayevskiy; John Parr Snyder (1995).
*Map Projections: A Reference Manual*. Bristol: Taylor and Francis. p. 133. ISBN 978-0-7484-0303-5. - ↑ John Parr Snyder (1993).
*Flattening the Earth: Two Thousand Years of Map Projections*. pp. 227–228. ISBN 0-226-76747-7.

- Tobler, Waldo (2002). "Qibla, and Related, Map Projections".
*Cartography and Geographic Information Science*.**29**(1): 17–23. doi:10.1559/152304002782064574. ISSN 1523-0406.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.