The International Terrestrial Reference System (ITRS) describes procedures for creating reference frames suitable for use with measurements on or near the Earth's surface. This is done in much the same way that a physical standard might be described as a set of procedures for creating a realization of that standard. The ITRS defines a geocentric system of coordinates using the SI system of measurement.
An International Terrestrial Reference Frame (ITRF) is a realization of the ITRS. Its origin is at the center of mass of the whole earth including the oceans and atmosphere. New ITRF solutions are produced every few years, using the latest mathematical and surveying techniques to attempt to realize the ITRS as precisely as possible. Due to experimental error, any given ITRF will differ very slightly from any other realization of the ITRF. The difference between the latest as of 2006 WGS 84 (frame realisation G1150) and the latest ITRF2000 is only a few centimeters and RMS difference of one centimeter per component. [1]
The ITRS and ITRF solutions are maintained by the International Earth Rotation and Reference Systems Service (IERS). Practical navigation systems are in general referenced to a specific ITRF solution, or to their own coordinate systems which are then referenced to an ITRF solution. For example, the Galileo Terrestrial Reference Frame (GTRF) is used for the Galileo navigation system; currently defined as ITRF2005 by the European Space Agency. [2]
The ITRF realizations developed from the ITRS since 1991 include the following versions: [3]
Name | Ref. epoch | EPSG code | Notes |
---|---|---|---|
ITRF91 | 1988.0 | 4913 7903 8991 | |
ITRF92 | 1988.0 | 4914 7904 8992 | First realization of the ITRS |
ITRF93 | 1988.0 | 4915 7905 8993 | |
ITRF94 | 1993.0 | 4916 7906 8994 | |
ITRF96 | 1997.0 | 4917 7907 8995 | |
ITRF97 | 1997.0 | 4918 7908 8996 | |
ITRF2000 | 1997.0 | 4919 7909 8997 | First solution that combines unconstrained space geodesy solutions free from any tectonic plate motion model. [4] From this version onwards, the motion of the tectonic plate is represented in the solution for each station as a velocity vector. Previous ITRFs only continued the initial positions, using a motion model to fill in the velocity. |
ITRF2005 | 2000.0 | 4896 7910 8998 | Constructed with input data under the form of time series of station positions and Earth Orientation Parameters. [5] This version introduces extra parameters to describe the year-periodic motion of the stations: A (amplitude) and φ (phase) per-axis. This sort of seasonal variation has an amplitude of around 1 cm and is attributed to non-tidal loading effects (e.g. the shifting weight of water). |
ITRF2008 | 2005.0 | 5332 7911 8999 | Includes tropospheric modeling and improved solution methods. [6] |
ITRF2014 | 2010.0 | 7789 7912 9000 | Generated with an enhanced modeling of nonlinear station motions. [7] Specifically:
|
ITRF2020 | 2015.0 | 9988 9989 9990 | [8] |
GNSS systems: [2]
National systems:
The GPS reference epoch was moved from 2000.0 to 2001.0 in G1150 due to an Alaskan earthquake in November 2002. Still in 2022 ITRF2020 was released, yet GPS was only using G2139 in its antennas, which was aligned to ITRF2014 (IGb14) (though at epoch 2016.0, not reference epoch 2010.0). [9] On 7 January 2024 move to IGS20 happened, so WGS 84 is now aligned with ITRF2020, including PSD (post-seismic deformation), also called G2296.
On the other hand GLONASS is using PZ-90.11, which is close to ITRF2008 at epoch 2011.0 and is using 2010.0 epoch (that means when you use reference transformation to PZ-90.11 you will get January 2010 date).
Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.
The International Earth Rotation and Reference Systems Service (IERS), formerly the International Earth Rotation Service, is the body responsible for maintaining global time and reference frame standards, notably through its Earth Orientation Parameter (EOP) and International Celestial Reference System (ICRS) groups.
The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM). The standard is published and maintained by the United States National Geospatial-Intelligence Agency.
The Greenwich meridian is a prime meridian, a geographical reference line that passes through the Royal Observatory, Greenwich, in London, England. From 1884 to 1974, the Greenwich meridian was the international standard prime meridian, used worldwide for timekeeping and navigation. The modern standard, the IERS Reference Meridian, is based on the Greenwich meridian, but differs slightly from it. This prime meridian was first established by Sir George Airy in 1851, and by 1884, over two-thirds of all ships and tonnage used it as the reference meridian on their charts and maps. In October of that year, at the invitation of the President of the United States, 41 delegates from 25 nations met in Washington, D.C., United States, for the International Meridian Conference. This conference selected the meridian passing through Greenwich as the world standard prime meridian due to its popularity. However, France abstained from the vote, and French maps continued to use the Paris meridian for several decades. In the 18th century, London lexicographer Malachy Postlethwayt published his African maps showing the "Meridian of London" intersecting the Equator a few degrees west of the later meridian and Accra, Ghana.
In satellite laser ranging (SLR) a global network of observation stations measures the round trip time of flight of ultrashort pulses of light to satellites equipped with retroreflectors. This provides instantaneous range measurements of millimeter level precision which can be accumulated to provide accurate measurement of orbits and a host of important scientific data. The laser pulse can also be reflected by the surface of a satellite without a retroreflector, which is used for tracking space debris.
A geodetic datum or geodetic system is a global datum reference or reference frame for precisely representing the position of locations on Earth or other planetary bodies by means of geodetic coordinates. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A horizontal datum is used to measure a location across the Earth's surface, in latitude and longitude or another coordinate system; a vertical datum is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). Since the rise of the global positioning system (GPS), the ellipsoid and datum WGS 84 it uses has supplanted most others in many applications. The WGS 84 is intended for global use, unlike most earlier datums.
The European Terrestrial Reference System 1989 (ETRS89) is an ECEF geodetic Cartesian reference frame, in which the Eurasian Plate as a whole is static. The coordinates and maps in Europe based on ETRS89 are not subject to change due to the continental drift.
Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.
A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). As of 2024, four global systems are operational: the United States's Global Positioning System (GPS), Russia's Global Navigation Satellite System (GLONASS), China's BeiDou Navigation Satellite System (BDS), and the European Union's Galileo.
The North American Datum (NAD) is the horizontal datum now used to define the geodetic network in North America. A datum is a formal description of the shape of the Earth along with an "anchor" point for the coordinate system. In surveying, cartography, and land-use planning, two North American Datums are in use for making lateral or "horizontal" measurements: the North American Datum of 1927 (NAD 27) and the North American Datum of 1983 (NAD 83). Both are geodetic reference systems based on slightly different assumptions and measurements.
The Earth-centered, Earth-fixed coordinate system, also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth as X, Y, and Z measurements from its center of mass. Its most common use is in tracking the orbits of satellites and in satellite navigation systems for measuring locations on the surface of the Earth, but it is also used in applications such as tracking crustal motion.
DORIS is a French satellite system used for the determination of satellite orbits and for positioning. The name is an acronym of "Doppler Orbitography and Radiopositioning Integrated by Satellite" or, in French, Détermination d'Orbite et Radiopositionnement Intégré par Satellite.
The Bessel ellipsoid is an important reference ellipsoid of geodesy. It is currently used by several countries for their national geodetic surveys, but will be replaced in the next decades by modern ellipsoids of satellite geodesy.
An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.
The International Association of Geodesy (IAG) is a constituent association of the International Union of Geodesy and Geophysics.
The National Spatial Reference System (NSRS), managed by the National Geodetic Survey (NGS), is a coordinate system that includes latitude, longitude, elevation, and other values. The NSRS consists of a National Shoreline, the NOAA CORS Network, a network of permanently marked points, and a set of models that describe dynamic geophysical processes affecting spatial measurements. The system is based on the datums NAD 83 and NAVD 88.
In geodesy and astrometry, earth orientation parameters (EOP) describe irregularities in the rotation of planet Earth. EOP provide the rotational transform from the International Terrestrial Reference System (ITRS) to the International Celestial Reference System (ICRS), or vice versa, as a function of time.
UNAVCO was a non-profit university-governed consortium that facilitated geology research and education using geodesy.
The IERS Reference Meridian (IRM), also called the International Reference Meridian, is the prime meridian maintained by the International Earth Rotation and Reference Systems Service (IERS). It passes about 5.3 arcseconds east of George Biddell Airy's 1851 transit circle which is 102 metres (335 ft) at the latitude of the Royal Observatory, Greenwich. Thus it differs slightly from the historical Greenwich Meridian.
Tonie Marie van Dam is an American geophysicist and geodesist, known for her pioneering research on solid Earth deformations due to loads from atmospheric and hydrologic pressures. She and her collaborators used space geodetic observations and modeling for increased precision in measuring and understanding such loads.