This timeline of volcanism on Earth includes a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic explosivity index (VEI) or equivalent sulfur dioxide emission during the Quaternary period (from 2.58 Mya to the present). Other volcanic eruptions are also listed.
Some eruptions cooled the global climate—inducing a volcanic winter—depending on the amount of sulfur dioxide emitted and the magnitude of the eruption. [1] [2] Before the present Holocene epoch, the criteria are less strict because of scarce data availability, partly since later eruptions have destroyed the evidence. Only some eruptions before the Neogene period (from 23 Mya to 2.58 Mya) are listed. Known large eruptions after the Paleogene period (from 66 Mya to 23 Mya) are listed, especially those relating to the Yellowstone hotspot, Santorini caldera, and the Taupō Volcanic Zone.
Active volcanoes such as Stromboli, Mount Etna and Kīlauea do not appear on this list, but some back-arc basin volcanoes that generated calderas do appear. Some dangerous volcanoes in "populated areas" appear many times: Santorini six times, and Yellowstone hotspot 21 times. The Bismarck volcanic arc, New Britain, and the Taupō Volcanic Zone, New Zealand, appear often too.
In addition to the events listed below, there are many examples of eruptions in the Holocene on the Kamchatka Peninsula, [3] which are described in a supplemental table by Peter Ward. [4]
The Holocene epoch begins 11,700 years BP (10,000 14C years ago). [5]
This is a sortable summary of 27 major eruptions in the last 2000 years with VEI ≥6, implying an average of about 1.3 per century. The count does not include the notable VEI 5 eruptions of Mount St. Helens and Mount Vesuvius. Date uncertainties, tephra volumes, and references are also not included.
Caldera/ Eruption name | Volcanic arc/ belt or Subregion or Hotspot | VEI | Date | Known/proposed consequences |
---|---|---|---|---|
Mount Pinatubo | Luzon Volcanic Arc | 6 | 15 Jun 1991 | Global temperature fell by 0.4 °C |
Novarupta | Aleutian Range | 6 | 6 Jun 1912 | |
Santa María | Central America Volcanic Arc | 6 | 24 Oct 1902 | |
Krakatoa | Sunda Arc | 6 | 26-28 Aug 1883 | At least 30,000 dead |
Mount Tambora | Lesser Sunda Islands | 7 | 10 Apr 1815 | Year Without a Summer (1816) |
1808 mystery eruption | Southwestern Pacific Ocean | 6 | Dec 1808 | A sulfate spike in ice cores |
Long Island (Papua New Guinea) | Bismarck Volcanic Arc | 6 | 1660 | |
Huaynaputina | Andes, Central Volcanic Zone | 6 | 19 Feb 1600 | Russian famine of 1601–1603 |
Billy Mitchell | Bougainville & Solomon Is. | 6 | 1580 | |
Bárðarbunga | Iceland | 6 | 1477 | |
1458 mystery eruption | Unknown | 6-7 | 1458 | Possibly larger than Mount Tambora's |
1452/1453 mystery eruption | Unknown | 6-7 | 1452–53 | 2nd pulse [27] of Little Ice Age? |
Quilotoa | Andes, Northern Volcanic Zone | 6 | 1280 | |
Samalas (Mount Rinjani) | Lombok, Lesser Sunda Islands | 7 | 1257 | 1257 Samalas eruption, 1st pulse [28] [29] of Little Ice Age? (c.1250) |
Baekdu Mountain/Tianchi eruption | China/North Korea border | 7 | 946, Nov-947 | Limited regional climatic effects. [30] |
Ceboruco | Trans-Mexican Volcanic Belt | 6 | 930 | |
Dakataua | Bismarck Volcanic Arc | 6 | 800 | |
Pago | Bismarck Volcanic Arc | 6 | 710 | |
Mount Churchill | eastern Alaska, USA | 6 | 700 | |
Rabaul caldera | Bismarck Volcanic Arc | 6 | 683 (est.) | |
Volcanic winter of 536 | Unknown | 6-7 | 535 | |
Ilopango | Central America Volcanic Arc | 6 | 450 | |
Ksudach | Kamchatka Peninsula | 6 | 240 | |
Taupō Caldera/Hatepe eruption | Taupō Volcano | 7 | 180 or 230 | Affected skies over Rome and China |
Mount Churchill | eastern Alaska, USA | 6 | 60 | |
Ambrym | New Hebrides Arc | 6 | 50 | |
Apoyeque | Central America Volcanic Arc | 6 | 50 BC (±100) | |
Note: Caldera names tend to change over time. For example, Ōkataina Caldera, Haroharo Caldera, Haroharo volcanic complex, and Tarawera volcanic complex all had the same magma source in the Taupō Volcanic Zone. Yellowstone Caldera, Henry's Fork Caldera, Island Park Caldera, Heise Volcanic Field all had Yellowstone hotspot as magma source.
2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.
Approximately 5.332 million years BP, the Pliocene epoch begins. Most eruptions before the Quaternary period have an unknown VEI.
Approximately 23.03 million years BP, the Neogene period and Miocene epoch begin.
VEI | Tephra Volume (cubic kilometers) | Example |
---|---|---|
0 | Effusive | Masaya Volcano, Nicaragua, 1570 |
1 | >0.00001 | Poás Volcano, Costa Rica, 1991 |
2 | >0.001 | Mount Ruapehu, New Zealand, 1971 |
3 | >0.01 | Nevado del Ruiz, Colombia, 1985 |
4 | >0.1 | Eyjafjallajökull, Iceland, 2010 |
5 | >1 | Mount St. Helens, United States, 1980 |
6 | >10 | Mount Pinatubo, Philippines, 1991 |
7 | >100 | Mount Tambora, Indonesia, 1815 |
8 | >1000 | Yellowstone Caldera, United States, Pleistocene |
The global dimming through volcanism (ash aerosol and sulfur dioxide) is quite independent of the eruption VEI. [104] [105] [106] When sulfur dioxide (boiling point at standard state: -10 °C) reacts with water vapor, it creates sulfate ions (the precursors to sulfuric acid), which are very reflective; ash aerosol on the other hand absorbs ultraviolet. [107] Global cooling through volcanism is the sum of the influence of the global dimming and the influence of the high albedo of the deposited ash layer. [108] The lower snow line and its higher albedo might prolong this cooling period. [109] Bipolar comparison showed six sulfate events: Tambora (1815), Cosigüina (1835), Krakatoa (1883), Agung (1963), and El Chichón (1982), and the 1808 mystery eruption. [110] And the atmospheric transmission of direct solar radiation data from the Mauna Loa Observatory (MLO), Hawaii (19°32'N) detected only five eruptions: [111]
But very large sulfur dioxide emissions overdrive the oxidizing capacity of the atmosphere. Carbon monoxide's and methane's concentration goes up (greenhouse gases), global temperature goes up, ocean's temperature goes up, and ocean's carbon dioxide solubility goes down. [1]
{{cite book}}
: |website=
ignored (help){{cite web}}
: Missing or empty |title=
(help){{cite journal}}
: CS1 maint: multiple names: authors list (link)