La Garita Caldera

Last updated
La Garita Caldera
WheelerGACO.jpg
Volcanic ash formations of La Garita Caldera, looking northeast (Wheeler Geologic Monument).
Highest point
Coordinates 37°45′23″N106°56′03″W / 37.75639°N 106.93417°W / 37.75639; -106.93417 Coordinates: 37°45′23″N106°56′03″W / 37.75639°N 106.93417°W / 37.75639; -106.93417
Geography
USA Colorado relief location map.svg
Red triangle with thick white border.svg
La Garita Caldera
Location of La Garita Caldera within Colorado
Location Mineral County, Colorado, US, near Creede
Parent range San Juan Mountains
Geology
Mountain type Caldera
Last eruption 26.3 Ma (Fish Canyon Tuff 27.8 Ma)

La Garita Caldera is a large supervolcanic caldera in the San Juan volcanic field in the San Juan Mountains near the town of Creede in southwestern Colorado, United States. [1] It is west of La Garita, Colorado. The eruption that created the La Garita Caldera is among the largest known volcanic eruptions in Earth's history, as well as being one of the most powerful known supervolcanic events. [2] [3]

Contents

Date

The La Garita Caldera is one of a number of calderas that formed during a massive ignimbrite flare-up in Colorado, Utah and Nevada from 40–18 million years ago, and was the site of massive eruptions about 28.01±0.04 million years ago, during the Oligocene Epoch. [4]

Area devastated

The area devastated by the La Garita eruption is thought to have covered a significant portion of what is now Colorado. The deposit, known as the Fish Canyon Tuff, covered at least 11,000 sq mi (28,000 km2). Its average thickness is 330 ft (100 m). The eruption might have formed a large-area ash-fall, but none has yet been identified. [5]

Size of eruption

The scale of La Garita volcanism was the second greatest of the Cenozoic Era. The resulting Fish Canyon Tuff has a volume of approximately 1,200 cubic miles (5,000 km3), giving it a Volcanic Explosivity Index rating of 8. [6] By comparison, the eruption of Mount St. Helens on 18 May 1980 was 0.25 cubic miles (1.0 km3) in volume. [7] By contrast, the most powerful human-made explosive device ever detonated, the Tsar Bomba, had a yield of 50 megatons, whereas the eruption at La Garita was about 5,000 times more energetic. However, because Tsar Bomba's reaction was complete within nanoseconds, while a volcanic explosion can take seconds or minutes, the power of the events is comparable if measured within the respective bounded timeframes.

The Fish Canyon eruption was the second most energetic event to have occurred on Earth since the Cretaceous–Paleogene extinction event 66 million years ago. The asteroid impact responsible for that mass-extinction, equivalent to 240 teratons of TNT, [8] was approximately one hundred times more powerful than the Fish Canyon eruption.

Geology

The Fish Canyon Tuff, made of dacite, is uniform in its petrological composition and forms a single cooling unit despite the huge volume. Dacite is a silicic volcanic rock common in explosive eruptions, lava domes and short thick lava flows. There are also large intracaldera lavas composed of andesite, a volcanic rock compositionally intermediate between basalt (poor in silica content) and dacite (higher silica content) in the La Garita Caldera.

The caldera itself, like the eruption of Fish Canyon Tuff, is quite large in scale. It is 22 by 47 miles (35 by 75 km) and oblong in shape. Most supervolcano calderas of explosive origin are slightly ovoid or oblong in shape. Because of the vast scale and erosion, it took scientists over 30 years to fully determine the size of the caldera. La Garita is considered an extinct volcano.

La Garita is also the source of at least seven major eruptions of welded tuff deposits over a span of 1.5 million years since the Fish Canyon Tuff eruption. The caldera is also known to have extensive outcrops of a very unusual lava-like rock unit, called the Pagosa Peak Dacite, made of dacite that is very similar to that of the Fish Canyon Tuff. The Pagosa Peak Dacite, which has characteristics of both lava and welded tuff, was likely erupted shortly before the Fish Canyon Tuff. The Pagosa Peak Dacite has been interpreted as having erupted during low-energy pyroclastic fountaining and has a volume of about 50–70 cubic miles (200–300 km3). These rocks were identified as lava because the unit has a highly elongated shape (1:50) and very high viscosity of the crystal-rich magma similar to those of flow-layered silicic lava. The Pagosa Peak Dacite formed by low-column pyroclastic fountaining and lateral transport as dense, poorly-inflated pyroclastic flows. [9]

See also

Related Research Articles

A caldera is a large cauldron-like hollow that forms shortly after the emptying of a magma chamber in a volcanic eruption. When large volumes of magma are erupted over a short time, structural support for the rock above the magma chamber is lost. The ground surface then collapses downward into the emptied or partially emptied magma chamber, leaving a massive depression at the surface. Although sometimes described as a crater, the feature is actually a type of sinkhole, as it is formed through subsidence and collapse rather than an explosion or impact. Only seven caldera-forming collapses are known to have occurred since 1900, most recently at Bárðarbunga volcano, Iceland in 2014.

Supervolcano Volcano that has erupted 1000 cubic km in a single eruption

A supervolcano is a large volcano that has had an eruption with a Volcanic Explosivity Index (VEI) of 8, the largest recorded value on the index. This means the volume of deposits for that eruption is greater than 1,000 cubic kilometers.

Rhyolite An igneous, volcanic rock, of felsic (silica-rich) composition

Rhyolite is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained rock. The mineral assemblage is predominantly quartz, sanidine and plagioclase. It is the extrusive equivalent to granite.

Volcanic cone Landform of ejecta from a volcanic vent piled up in a conical shape

Volcanic cones are among the simplest volcanic landforms. They are built by ejecta from a volcanic vent, piling up around the vent in the shape of a cone with a central crater. Volcanic cones are of different types, depending upon the nature and size of the fragments ejected during the eruption. Types of volcanic cones include stratocones, spatter cones, tuff cones, and cinder cones.

Dacite Volcanic rock intermediate in composition between andesite and rhyolite

Dacite is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. It is composed predominantly of plagioclase feldspar and quartz.

Ignimbrite A variety of hardened tuff

Ignimbrite is a variety of hardened tuff. Ignimbrites are igneous rocks made up of crystal and rock fragments in a glass-shard groundmass, albeit the original texture of the groundmass might be obliterated due to high degrees of welding. The term ignimbrite is not recommended by the IUGS Subcommission on the Systematics of Igneous Rocks.

Yellowstone hotspot volcanic hotspot in the United States

The Yellowstone hotspot is a volcanic hotspot in the United States responsible for large scale volcanism in Idaho, Montana, Nevada, Oregon, and Wyoming as the North American tectonic plate moved over it. It formed the eastern Snake River Plain through a succession of caldera-forming eruptions. The resulting calderas include the Island Park Caldera, the Henry's Fork Caldera, and the Bruneau-Jarbidge caldera. The hotspot currently lies under the Yellowstone Caldera. The hotspot's most recent caldera-forming supereruption, known as the Lava Creek eruption, took place 640,000 years ago and created the Lava Creek Tuff, and the most recent Yellowstone Caldera. The Yellowstone hotspot is one of a few volcanic hotspots underlying the North American tectonic plate; another example is the Anahim hotspot.

Phreatomagmatic eruption Volcanic eruption involving both steam and magma

Phreatomagmatic eruptions are volcanic eruptions resulting from interaction between magma and water. They differ from exclusively magmatic eruptions and phreatic eruptions. Unlike phreatic eruptions, the products of phreatomagmatic eruptions contain juvenile (magmatic) clasts. It is common for a large explosive eruption to have magmatic and phreatomagmatic components.

Timeline of volcanism on Earth

This timeline of volcanism on Earth includes a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic Explosivity Index (VEI) or equivalent sulfur dioxide emission during the Quaternary period. Other volcanic eruptions are also listed.

San Juan volcanic field

The San Juan volcanic field is part of the San Juan Mountains in southwestern Colorado. It consists mainly of volcanic rocks that form the largest remnant of a major composite volcanic field that covered most of the southern Rocky Mountains in the Middle Tertiary geologic time. There are approximately fifteen calderas known in the San Juan Volcanic Fields; however, it is possible that there are two or even three more in the region.

Fish Canyon Tuff

The Fish Canyon Tuff is the large volcanic ash flow deposit resulting from one of the largest known explosive eruptions on Earth, estimated at 1,200 cu mi (5,000 km3). (see List of largest volcanic eruptions) The eruption was centered at La Garita Caldera in southwest Colorado. The tuff can be assumed to belong to one eruption due to its high chemical consistency (SiO2=bulk 67.5–68.5% (dacite), matrix 75–76% (rhyolite) and consistent phenocryst content (35–50%) and composition (plagioclase, sanidine, quartz, biotite, hornblende, sphene, apatite, zircon, Fe-Ti oxides are the primary phenocrysts). This tuff and eruption is part of the larger San Juan volcanic field and Mid-Tertiary ignimbrite flare-up.

Mid-Tertiary ignimbrite flare-up

The Mid-Tertiary ignimbrite flare-up, was a dramatic period of volcanic eruptions in mid-Cenozoic time, approximately 25–40 million years ago, centered in the western United States. These eruptions are seen today as deposits of ignimbrite, the pyroclastic material that was laid down from these effusions.

Calabozos Mountain in Chile

Calabozos is a Holocene caldera in central Chile's Maule Region. Part of the Chilean Andes' volcanic segment, it is considered a member of the Southern Volcanic Zone (SVZ), one of the three distinct volcanic belts of South America. This most active section of the Andes runs along central Chile's western edge, and includes more than 70 of Chile's stratovolcanoes and volcanic fields. Calabozos lies in an extremely remote area of poorly glaciated mountains.

Cerro Panizos

Panizos is a Late Miocene era caldera in the Potosí Department of Bolivia and the Jujuy Province of Argentina. It is part of the Altiplano-Puna volcanic complex of the Central Volcanic Zone in the Andes. 50 volcanoes active in recent times are found in the Central Volcanic Zone, and several major caldera complexes are situated in the area. The caldera is located in a logistically difficult area of the Andes.

Chachani

Chachani is a volcanic complex in southern Peru, 22 kilometres (14 mi) northwest of the city of Arequipa. Part of the Central Volcanic Zone of the Andes, it is 6,057 metres (19,872 ft) above sea level. It consists of several lava domes and individual volcanoes such as Nocarane, along with lava shields such as the Airport Domes. Underneath Chachani lies a caldera.

Polvadera Group A group of geologic formations in New Mexico

The Polvadera Group is a group of geologic formations exposed in and around the Jemez Mountains of northern New Mexico. Radiometric dating gives it an age of 13 to 2.2 million years, corresponding to the Miocene through early Quaternary.

Keres Group A group of geologic formations in New Mexico

The Keres Group is a group of geologic formations exposed in and around the Jemez Mountains of northern New Mexico. Radiometric dating gives it an age of 13 to 6 million years, corresponding to the Miocene epoch.

Latir volcanic field Volcanic field in New Mexico

The Latir volcanic field is a large volcanic field near Questa, New Mexico, that was active during the late Oligocene to early Miocene, 28 to 22 million years ago (Ma). It includes the Questa caldera, in whose deeply eroded interior is located the Molycorp Questa molybdenum mine.

References

  1. Steven, Thomas A.; Lipman, Peter W. (1976). "Calderas of the San Juan Volcanic Field, Southwestern Colorado". U.S. Geological Survey Professional Papers. Washington, DC: U.S. Government Printing Office. 958: 1–35. Retrieved 2012-05-16.
  2. "What's the Biggest Volcanic Eruption Ever?". livescience.com. November 10, 2010. Retrieved 2014-02-01.
  3. Best, MG (2013). "The 36–18 Ma Indian Peak–Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions". Geosphere. 9 (4): 864–950. Bibcode:2013Geosp...9..864B. doi: 10.1130/GES00902.1 .
  4. Phillips, D (2013). "Ultra-high precision 40Ar/39Ar ages for Fish Canyon Tuff and Alder Creek Rhyolite sanidine: New dating standards required?". Geochimica et Cosmochimica Acta. 121: 229–239. Bibcode:2013GeCoA.121..229P. doi:10.1016/j.gca.2013.07.003.
  5. Lipman3, PW (2000). "Central San Juan caldera cluster: regional volcanic framework". Geological Society of America Special Papers. 346: 9–69. doi:10.1130/0-8137-2346-9.9. ISBN   0-8137-2346-9.
  6. https://www.amazon.com/Super-Volcano-Ticking-Yellowstone-National-ebook/dp/B004GHOHO8/ref=sr_1_1?keywords=supervolcano&qid=1567800003&s=books&sr=1-1
  7. Mason, et al.
  8. Hildebrand, A. R.; Pilkington, M.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Halpenny, J. F.; Niehaus, D. (1998). "Mapping Chicxulub crater structure with gravity and seismic reflection data". Geological Society, London, Special Publications. 140 (1): 155–176. Bibcode:1998GSLSP.140..155H. doi:10.1144/GSL.SP.1998.140.01.12.
  9. Bachmann, O.; Dungan, M.A.; Lipman, P.W. (May 2000). "Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado". Journal of Volcanology and Geothermal Research. 98 (1–4): 153–171. Bibcode:2000JVGR...98..153B. doi:10.1016/S0377-0273(99)00185-7.

Bibliography