La Garita Caldera

Last updated
La Garita Caldera
WheelerGACO.jpg
Volcanic ash formations of La Garita Caldera, looking northeast (Wheeler Geologic Area)
Highest point
Coordinates 37°45′23″N106°56′03″W / 37.75639°N 106.93417°W / 37.75639; -106.93417
Geography
USA Colorado relief location map.svg
Red triangle with thick white border.svg
La Garita Caldera
Location of La Garita Caldera within Colorado
Location Mineral County, Colorado, US, around Creede
Parent range San Juan Mountains
Geology
Mountain type Caldera, extinct supervolcano
Last eruption 26.3 Ma (Fish Canyon Tuff 27.8 Ma)

La Garita Caldera is a large caldera and extinct supervolcano in the San Juan volcanic field in the San Juan Mountains around the town of Creede in southwestern Colorado, United States. [1] It is west of La Garita, Colorado. The eruption that created the La Garita Caldera is among the largest known volcanic eruptions in Earth's history, as well as being one of the most powerful known supervolcanic events. [2] [3]

Contents

Date

The La Garita Caldera is one of a number of calderas that formed during a massive ignimbrite flare-up in Colorado, Utah, and Nevada from 40 to 18 million years ago, and was the site of massive eruptions about 28.01±0.04 million years ago, during the Oligocene Epoch. [4]

Area devastated

The area devastated by the La Garita eruption is thought to have covered a significant portion of what is now Colorado. The deposit, known as the Fish Canyon Tuff, covered at least 11,000 sq mi (28,000 km2). Its average thickness is 330 ft (100 m). The eruption might have formed a large-area ash-fall, but none has yet been identified. [5]

Size of eruption

The scale of La Garita volcanism was the second greatest of the Cenozoic Era. The resulting Fish Canyon Tuff has a volume of approximately 1,200 cubic miles (5,000 km3), giving it a volcanic explosivity index rating of 8. [6] By comparison, the eruption of Mount St. Helens on May 18, 1980, was 0.25 cubic miles (1.0 km3) in volume. [7] By contrast, the most powerful human-made explosive device ever detonated, the Tsar Bomba, had a yield of 50 megatons, whereas the eruption at La Garita was about 5,000 times more energetic. [8]

The Fish Canyon eruption was the second most energetic event to have occurred on Earth since the Cretaceous–Paleogene extinction event 66 million years ago. The asteroid impact responsible for that mass-extinction, equivalent to 100 teratons of TNT, [9] was approximately 420 times more powerful than the Fish Canyon eruption.

Geology

The Fish Canyon Tuff, made of dacite, is uniform in its petrological composition and forms a single cooling unit despite the huge volume. Dacite is a silicic volcanic rock common in explosive eruptions, lava domes and short thick lava flows. There are also large intracaldera lavas composed of andesite, a volcanic rock compositionally intermediate between basalt (poor in silica content) and dacite (higher silica content) in the La Garita Caldera.

The caldera itself, like the eruption of Fish Canyon Tuff, is large in scale. It is 22 by 47 miles (35 by 75 km) and oblong in shape. Many calderas of explosive origin are slightly ovoid or oblong in shape. Because of the vast scale and erosion, it took scientists over 30 years to fully determine the size of the caldera. La Garita is considered an extinct volcano.

La Garita is also the source of at least seven major eruptions of welded tuff deposits over a span of 1.5 million years since the Fish Canyon Tuff eruption. The caldera is also known to have extensive outcrops of a very unusual lava-like rock unit, called the Pagosa Peak Dacite, made of dacite that is very similar to that of the Fish Canyon Tuff. The Pagosa Peak Dacite, which has characteristics of both lava and welded tuff, likely erupted shortly before the Fish Canyon Tuff. The Pagosa Peak Dacite has been interpreted as having erupted during low-energy pyroclastic fountaining and has a volume of about 50–70 cubic miles (200–300 km3). These rocks were identified as lava because the unit has a highly elongated shape (1:50) and very high viscosity of the crystal-rich magma similar to those of flow-layered silicic lava. The Pagosa Peak Dacite formed by low-column pyroclastic fountaining and lateral transport as dense, poorly-inflated pyroclastic flows. [10]

See also

Related Research Articles

A caldera is a large cauldron-like hollow that forms shortly after the emptying of a magma chamber in a volcanic eruption. An eruption that ejects large volumes of magma over a short period of time can cause significant detriment to the structural integrity of such a chamber, greatly diminishing its capacity to support its own roof, and any substrate or rock resting above. The ground surface then collapses into the emptied or partially emptied magma chamber, leaving a large depression at the surface. Although sometimes described as a crater, the feature is actually a type of sinkhole, as it is formed through subsidence and collapse rather than an explosion or impact. Compared to the thousands of volcanic eruptions that occur over the course of a century, the formation of a caldera is a rare event, occurring only a few times within a given window of 100 years. Only eight caldera-forming collapses are known to have occurred between 1911 and 2018, with a caldera collapse at Kīlauea, Hawaii in 2018. Volcanoes that have formed a caldera are sometimes described as "caldera volcanoes".

<span class="mw-page-title-main">Supervolcano</span> Volcano that has had an eruption with a volcanic explosivity index (VEI) of 8

A supervolcano is a volcano that has had an eruption with a volcanic explosivity index (VEI) of 8, the largest recorded value on the index. This means the volume of deposits for such an eruption is greater than 1,000 cubic kilometers.

<span class="mw-page-title-main">Dacite</span> Volcanic rock intermediate in composition between andesite and rhyolite

Dacite is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. It is composed predominantly of plagioclase feldspar and quartz.

<span class="mw-page-title-main">Geology of the Lassen volcanic area</span> Geology of a U.S. national park in California

The Lassen volcanic area presents a geological record of sedimentation and volcanic activity in and around Lassen Volcanic National Park in Northern California, U.S. The park is located in the southernmost part of the Cascade Mountain Range in the Pacific Northwest region of the United States. Pacific Oceanic tectonic plates have plunged below the North American Plate in this part of North America for hundreds of millions of years. Heat and molten rock from these subducting plates has fed scores of volcanoes in California, Oregon, Washington and British Columbia over at least the past 30 million years, including these in the Lassen volcanic areas.

<span class="mw-page-title-main">Mount Mazama</span> Complex volcano in the Cascade Range

Mount Mazama is a complex volcano in the western U.S. state of Oregon, in a segment of the Cascade Volcanic Arc and Cascade Range. The volcano is in Klamath County, in the southern Cascades, 60 miles (97 km) north of the Oregon–California border. Its collapse, due to the eruption of magma emptying the underlying magma chamber, formed a caldera that holds Crater Lake. Mount Mazama originally had an elevation of 12,000 feet (3,700 m), but following its climactic eruption this was reduced to 8,157 feet (2,486 m). Crater Lake is 1,943 feet (592 m) deep, the deepest freshwater body in the U.S. and the second deepest in North America after Great Slave Lake in Canada.

<span class="mw-page-title-main">Yellowstone hotspot</span> Volcanic hotspot in the United States

The Yellowstone hotspot is a volcanic hotspot in the United States responsible for large scale volcanism in Idaho, Montana, Nevada, Oregon, and Wyoming, formed as the North American tectonic plate moved over it. It formed the eastern Snake River Plain through a succession of caldera-forming eruptions. The resulting calderas include the Island Park Caldera, Henry's Fork Caldera, and the Bruneau-Jarbidge caldera. The hotspot currently lies under the Yellowstone Caldera. The hotspot's most recent caldera-forming supereruption, known as the Lava Creek Eruption, took place 640,000 years ago and created the Lava Creek Tuff, and the most recent Yellowstone Caldera. The Yellowstone hotspot is one of a few volcanic hotspots underlying the North American tectonic plate; another example is the Anahim hotspot.

<span class="mw-page-title-main">Powderhorn Wilderness</span> Protected area in southwestern Colorado, United States

The Powderhorn Wilderness is a 62,050-acre (251.1 km2) wilderness area in Hinsdale and Gunnison counties, Colorado, United States, located 5 miles (8.0 km) northeast of Lake City.

<span class="mw-page-title-main">Phreatomagmatic eruption</span> Volcanic eruption involving both steam and magma

Phreatomagmatic eruptions are volcanic eruptions resulting from interaction between magma and water. They differ from exclusively magmatic eruptions and phreatic eruptions. Unlike phreatic eruptions, the products of phreatomagmatic eruptions contain juvenile (magmatic) clasts. It is common for a large explosive eruption to have magmatic and phreatomagmatic components.

<span class="mw-page-title-main">Volcanic dam</span> Natural dam produced directly or indirectly by volcanism

A volcanic dam is a type of natural dam produced directly or indirectly by volcanism, which holds or temporarily restricts the flow of surface water in existing streams, like a man-made dam. There are two main types of volcanic dams, those created by the flow of molten lava, and those created by the primary or secondary deposition of pyroclastic material and debris. This classification generally excludes other, often larger and longer lived dam-type geologic features, separately termed crater lakes, although these volcanic centers may be associated with the source of material for volcanic dams, and the lowest portion of its confining rim may be considered as such a dam, especially if the lake level within the crater is relatively high.

<span class="mw-page-title-main">La Garita Mountains</span> Mountain range in Colorado, United States

The La Garita Mountains are a high mountain range in the San Juan Mountains, a sub-range of the Southern Rocky Mountains. The mountains are located in Saguache and Mineral counties in southwestern Colorado and are almost entirely managed as public land within the Rio Grande National Forest.

<span class="mw-page-title-main">Timeline of volcanism on Earth</span>

This timeline of volcanism on Earth includes a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic explosivity index (VEI) or equivalent sulfur dioxide emission during the Quaternary period. Other volcanic eruptions are also listed.

<span class="mw-page-title-main">Canadian Cascade Arc</span> Canadian segment of the North American Cascade Volcanic Arc

The Canadian Cascade Arc, also called the Canadian Cascades, is the Canadian segment of the North American Cascade Volcanic Arc. Located entirely within the Canadian province of British Columbia, it extends from the Cascade Mountains in the south to the Coast Mountains in the north. Specifically, the southern end of the Canadian Cascades begin at the Canada–United States border. However, the specific boundaries of the northern end are not precisely known and the geology in this part of the volcanic arc is poorly understood. It is widely accepted by geologists that the Canadian Cascade Arc extends through the Pacific Ranges of the Coast Mountains. However, others have expressed concern that the volcanic arc possibly extends further north into the Kitimat Ranges, another subdivision of the Coast Mountains, and even as far north as Haida Gwaii.

The San Juan volcanic field is part of the San Juan Mountains in southwestern Colorado. It consists mainly of volcanic rocks that form the largest remnant of a major composite volcanic field that covered most of the southern Rocky Mountains in the Middle Tertiary geologic time. There are approximately fifteen calderas known in the San Juan Volcanic Fields; however, it is possible that there are two or even three more in the region.

<span class="mw-page-title-main">Fish Canyon Tuff</span>

The Fish Canyon Tuff is the large volcanic ash flow or ignimbrite deposit resulting from one of the largest known explosive eruptions on Earth, estimated at 1,200 cu mi (5,000 km3). (see List of largest volcanic eruptions). The Fish Canyon Tuff eruption was centred at the La Garita Caldera in southwest Colorado; the caldera itself would have formed by collapse, as a result of the eruption. Studies of the tuff show that it all belongs to one eruption due to its uniform bulk-chemical composition (SiO2=bulk 67.5–68.5% (dacite), matrix 75–76% (rhyolite) and consistent phenocryst content (35–50%) and mineralogical composition (plagioclase, sanidine, quartz, biotite, hornblende, sphene, apatite, zircon, Fe-Ti oxides are the primary phenocrysts). This tuff and eruption is part of the larger San Juan volcanic field and the Oligocene Southern Rocky Mountain ignimbrite flare-up.

<span class="mw-page-title-main">Mid-Tertiary ignimbrite flare-up</span> Period of volcanic eruptions in mid-Cenozoic time

The Mid-Tertiary ignimbrite flare-up, was a dramatic period of volcanic eruptions in mid-Cenozoic time, approximately 25–40 million years ago, centered in the western United States. These eruptions are seen today as deposits of ignimbrite, the pyroclastic material that was laid down from these eruptions.

<span class="mw-page-title-main">Keres Group</span> A group of geologic formations in New Mexico

The Keres Group is a group of geologic formations exposed in and around the Jemez Mountains of northern New Mexico. Radiometric dating gives it an age of 13 to 6 million years, corresponding to the Miocene epoch.

<span class="mw-page-title-main">Latir volcanic field</span> Volcanic field in New Mexico

The Latir volcanic field is a large volcanic field near Questa, New Mexico, that was active during the late Oligocene to early Miocene, 28 to 22 million years ago (Ma). It includes the Questa caldera, in whose deeply eroded interior is located the Molycorp Questa molybdenum mine.

<span class="mw-page-title-main">Pagosa Peak</span> American mountain in Colorado

Pagosa Peak, elevation 12,658 feet, is a summit in the San Juan Mountains in Mineral County, Colorado, north of Pagosa Springs. The mountain lies in the Weminuche Wilderness and the San Juan National Forest. Pagosa Peak is visible from Pagosa Springs and serves as a landmark.

References

  1. Steven, Thomas A.; Lipman, Peter W. (1976). "Calderas of the San Juan Volcanic Field, Southwestern Colorado". U.S. Geological Survey Professional Papers. 958. Washington, DC: U.S. Government Printing Office: 1–35. Retrieved 2012-05-16.
  2. "What's the Biggest Volcanic Eruption Ever?". livescience.com. November 10, 2010. Retrieved 2014-02-01.
  3. Best, MG (2013). "The 36–18 Ma Indian Peak–Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions". Geosphere. 9 (4): 864–950. Bibcode:2013Geosp...9..864B. doi: 10.1130/GES00902.1 .
  4. Phillips, D (2013). "Ultra-high precision 40Ar/39Ar ages for Fish Canyon Tuff and Alder Creek Rhyolite sanidine: New dating standards required?". Geochimica et Cosmochimica Acta. 121: 229–239. Bibcode:2013GeCoA.121..229P. doi:10.1016/j.gca.2013.07.003.
  5. Lipman, Peter W (2000). "Central San Juan caldera cluster: regional volcanic framework". Geological Society of America Special Papers. 346: 9–69. doi:10.1130/0-8137-2346-9.9. ISBN   0-8137-2346-9.
  6. Super Volcano: The Ticking Time Bomb Beneath Yellowstone National Park. Voyageur Press. 10 November 2007.
  7. Mason, et al.
  8. "La Garita Mountains grew from volcanic explosions 35 million years ago". US Forest Service. 2021-08-25. Retrieved 2022-04-23.
  9. Schulte, Peter; Alegret, Laia; Arenillas, Ignacio; Arz, José A.; Barton, Penny J.; Bown, Paul R.; Bralower, Timothy J.; Christeson, Gail L.; Claeys, Philippe; Cockell, Charles S.; Collins, Gareth S. (2010-03-05). "The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary". Science. 327 (5970): 1214–1218. doi:10.1126/science.1177265. ISSN   0036-8075.
  10. Bachmann, O.; Dungan, M.A.; Lipman, P.W. (May 2000). "Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado". Journal of Volcanology and Geothermal Research. 98 (1–4): 153–171. Bibcode:2000JVGR...98..153B. doi:10.1016/S0377-0273(99)00185-7.

Bibliography