Snow line

Last updated
Climatic snow lines [1]
Cho Oyu - North face.jpg
Cho Oyu (8,201 m), Himalayas: 6,000 m
Cotopaxi volcano 2008-06-27T1322.jpg
Cotopaxi (5,897 m), Andes: 5,000 m
Brunegghorn and Weisshorn.jpg
Weisshorn (4,506 m), Alps: 3,000 m

The climatic snow line is the boundary between a snow-covered and snow-free surface. The actual snow line may adjust seasonally, and be either significantly higher in elevation, or lower. The permanent snow line is the level above which snow will lie all year.

Contents

Background

Snow line is an umbrella term for different interpretations of the boundary between snow-covered surface and snow-free surface. The definitions of the snow line may have different temporal and spatial focus. In many regions the changing snow line reflect seasonal dynamics. The final height of the snow line in a mountain environment at the end of the melting season is subject to climatic variability, and therefore may be different from year to year. The snow line is measured using automatic cameras, aerial photographs, or satellite images. Because the snow line can be established without on-the-ground measurements, it can be measured in remote and difficult to access areas. Therefore, the snow line has become an important variable in hydrological models. [2]

The average elevation of a transient snow line is called the "climatic snow line" and is used as a parameter to classify regions according to climatic conditions. The boundary between the accumulation zone and the ablation zone on glaciers is called the "annual snow line". The glacier region below this snow line was subject to melting in the previous season. The term "orographic snow line" is used to describe the snow boundary on surfaces other than glaciers. The term "regional snow line" is used to describe large areas. [2] The "permanent snow line" is the level above which snow will lie all year. [3]

Snow lines of global regions

The interplay of elevation and latitude affects the precise placement of the snow line at a particular location. At or near the equator, it is typically situated at approximately 4,500 metres (15,000 ft) above sea level. As one moves towards the Tropic of Cancer and Tropic of Capricorn, the parameter at first increases: in the Himalayas the permanent snow line can be as high as 5,700 metres (19,000 feet). Beyond the Tropics, the snow line becomes progressively lower as the latitude increases, to just below 3,000 metres (9,800 ft) in the Alps and falling all the way to sea level itself at the ice caps near the poles.[ citation needed ]

This 1848 "Sketch showing the actual elevation of the Snow Line in different Latitudes" by Alexander Keith Johnston shows the snow lines of mountains in America, Europe and Asia Scetch showing the actual elevation of the Snow Line in different Latitudes by Alexander Keith Johnston 1848.png
This 1848 "Sketch showing the actual elevation of the Snow Line in different Latitudes" by Alexander Keith Johnston shows the snow lines of mountains in America, Europe and Asia

In addition, the relative location to the nearest coastline can influence the elevation of the snow line. Areas near a coast might have a lower snow line than areas of the same elevation and latitude situated in a landmass interior due to more winter snowfall and because the average summer temperature of the surrounding lowlands would be warmer away from the sea. (This applies even in the tropics, since areas far from the sea will have larger diurnal temperature ranges and potentially less moisture, as observed with Kilimanjaro and presently glacier-free Mount Meru.) A higher elevation is therefore necessary to lower the temperature further against the surroundings and keep the snow from melting.[ citation needed ]

Furthermore, large-scale oceanic currents such as the North Atlantic Current can have significant effects over large areas (in this case warming northern Europe, extending even to some Arctic Ocean regions).[ citation needed ]

In the Northern Hemisphere the snow line on the north-facing slopes is at a lower elevation, as the north-facing slopes receive less sunlight (solar irradiance) than south-facing slopes. [3] The converse will occur in the Southern Hemisphere.

Glacier equilibrium line

The glacier equilibrium line is the point of transition between the accumulation zone and ablation zone. It is the line where the mass of these two zones is equal. Depending on the thickness of the glacier, this line can seem as though it is leaning more towards one zone but it is determined by the actual mass of ice in either zone. The rates of ablation and accumulation can also be used to determine the location of this line. [4]

This point is an important location to use in determining whether a glacier is growing or shrinking. A higher glacier equilibrium line will indicate that the glacier is shrinking, whereas a lower line will indicate that the glacier is growing. The terminus of a glacier advances or retreats based on the location of this equilibrium line.

Scientists are using remote sensing to better estimate the locations of this line on glaciers around the world. Using satellite imagery, scientists are able to identify whether the glacier is growing or receding. [5] This is a very helpful tool for analyzing glaciers that are difficult to access. Using this technology we can better gauge the effects of climate change on glaciers around the world.

Records

The highest mountain in the world below the snow line is Ojos del Salado. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Glacier</span> Persistent body of ice that is moving under its own weight

A glacier is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

<span class="mw-page-title-main">Cryosphere</span> Those portions of Earths surface where water is in solid form

The cryosphere is an all-encompassing term for the portions of Earth's surface where water is in solid form, including sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice sheets, and frozen ground. Thus, there is a wide overlap with the hydrosphere. The cryosphere is an integral part of the global climate system with important linkages and feedbacks generated through its influence on surface energy and moisture fluxes, clouds, precipitation, hydrology, atmospheric and oceanic circulation.

<span class="mw-page-title-main">Glaciology</span> Scientific study of ice and natural phenomena involving ice

Glaciology is the scientific study of glaciers, or more generally ice and natural phenomena that involve ice.

<span class="mw-page-title-main">Ice core</span> Cylindrical sample drilled from an ice sheet

An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper ones, and an ice core contains ice formed over a range of years. Cores are drilled with hand augers or powered drills; they can reach depths of over two miles (3.2 km), and contain ice up to 800,000 years old.

<span class="mw-page-title-main">Ice cap</span> Ice mass that covers less than 50,000 km² of land area

In glaciology, an ice cap is a mass of ice that covers less than 50,000 km2 (19,000 sq mi) of land area. Larger ice masses covering more than 50,000 km2 (19,000 sq mi) are termed ice sheets.

<span class="mw-page-title-main">Ojos del Salado</span> Highest volcano in the world

Nevado Ojos del Salado is a dormant complex volcano in the Andes on the Argentina–Chile border. It is the highest volcano on Earth and the highest peak in Chile. The upper reaches of Ojos del Salado consist of several overlapping lava domes, lava flows and volcanic craters, with an only sparse ice cover. The complex extends over an area of 70–160 square kilometres (27–62 sq mi) and its highest summit reaches an altitude of 6,893 metres (22,615 ft) above sea level. Numerous other volcanoes rise around Ojos del Salado.

<span class="mw-page-title-main">Glacier mass balance</span> Difference between accumulation and melting on a glacier

Crucial to the survival of a glacier is its mass balance of which surface mass balance (SMB), the difference between accumulation and ablation. Climate change may cause variations in both temperature and snowfall, causing changes in the surface mass balance. Changes in mass balance control a glacier's long-term behavior and are the most sensitive climate indicators on a glacier. From 1980 to 2012 the mean cumulative mass loss of glaciers reporting mass balance to the World Glacier Monitoring Service is −16 m. This includes 23 consecutive years of negative mass balances.

<span class="mw-page-title-main">Glacier ice accumulation</span>

Glacier ice accumulation occurs through accumulation of snow and other frozen precipitation, as well as through other means including rime ice, avalanching from hanging glaciers on cliffs and mountainsides above, and re-freezing of glacier meltwater as superimposed ice. Accumulation is one element in the glacier mass balance formula, with ablation counteracting. With successive years in which accumulation exceeds ablation, then a glacier will experience positive mass balance, and its terminus will advance.

<span class="mw-page-title-main">Retreat of glaciers since 1850</span> Shortening of glaciers by melting

The retreat of glaciers since 1850 is well documented and is one of the effects of climate change. The retreat of mountain glaciers, notably in western North America, Asia, the Alps and tropical and subtropical regions of South America, Africa and Indonesia, provide evidence for the rise in global temperatures since the late 19th century. The acceleration of the rate of retreat since 1995 of key outlet glaciers of the Greenland and West Antarctic ice sheets may foreshadow a rise in sea level, which would affect coastal regions. Excluding peripheral glaciers of ice sheets, the total cumulated global glacial losses over the 26-year period from 1993 to 2018 were likely 5500 gigatons, or 210 gigatons per yr.

<span class="mw-page-title-main">Ablation zone</span> Low-altitude area of a glacier

Ablation zone or ablation area refers to the low-altitude area of a glacier or ice sheet below firn with a net loss in ice mass due to melting, sublimation, evaporation, ice calving, aeolian processes like blowing snow, avalanche, and any other ablation. The equilibrium line altitude (ELA) or snow line separates the ablation zone from the higher-altitude accumulation zone. The ablation zone often contains meltwater features such as supraglacial lakes, englacial streams, and subglacial lakes. Sediments dropped in the ablation zone forming small mounds or hillocks are called kames. Kame and kettle hole topography is useful in identifying an ablation zone of a glacier. The seasonally melting glacier deposits much sediment at its fringes in the ablation area. Ablation constitutes a key part of the glacier mass balance.

<span class="mw-page-title-main">Accumulation zone</span> Area on a glacier

On a glacier, the accumulation zone is the area above the firn line, where snowfall accumulates and exceeds the losses from ablation,. The annual equilibrium line separates the accumulation and ablation zone annually. The accumulation zone is also defined as the part of a glacier's surface, usually at higher elevations, on which there is net accumulation of snow, which subsequently turns into firn and then glacier ice. Part of the glacier where snow builds up and turns to ice moves outward from there.

<span class="mw-page-title-main">Subantarctic</span> Term describing the parts of the three largest oceans nearest the Southern Ocean

The sub-Antarctic zone is a region in the Southern Hemisphere, located immediately north of the Antarctic region. This translates roughly to a latitude of between 46° and 60° south of the Equator. The subantarctic region includes many islands in the southern parts of the Atlantic, Indian, and Pacific oceans, especially those situated north of the Antarctic Convergence. Sub-Antarctic glaciers are, by definition, located on islands within the sub-Antarctic region. All glaciers located on the continent of Antarctica are by definition considered to be Antarctic glaciers.

<span class="mw-page-title-main">Tidewater glacier cycle</span> Behavior of glaciers that terminate at the sea

The tidewater glacier cycle is the typically centuries-long behavior of tidewater glaciers that consists of recurring periods of advance alternating with rapid retreat and punctuated by periods of stability. During portions of its cycle, a tidewater glacier is relatively insensitive to climate change.

In climate modelling, Ice-sheet models use numerical methods to simulate the evolution, dynamics and thermodynamics of ice sheets, such as the Greenland ice sheet, the Antarctic ice sheet or the large ice sheets on the northern hemisphere during the last glacial period. They are used for a variety of purposes, from studies of the glaciation of Earth over glacial–interglacial cycles in the past to projections of ice-sheet decay under future global warming conditions.

The glaciers in Bhutan, which covers about 3 percent of the total surface area, are responsible for feeding all rivers of Bhutan except the Amochu and Nyere Amachu.

<span class="mw-page-title-main">Tarfala research station</span> Glacial and climatological station in northern Sweden

The Tarfala research station is a field station of Stockholm University. The station is situated in the Tarfala Valley in northern Sweden. It specializes in glacial, periglacial and climatological research.

<span class="mw-page-title-main">Snezhnika</span> Glacier in Bulgaria

Snezhnika is a glacieret in the Pirin Mountains of Bulgaria, a remnant of the former Vihren Glacier. The glacieret lies at an elevation between 2,425 m (7,956 ft) and 2,480 m (8,140 ft) in the deep Golemiya Kazan cirque at the steep northern foot of Vihren, Pirin's highest summit. Due to the relatively easy access and its location along a popular hiking trail, Snezhnika is Bulgaria's most famous glacieret. Snezhnika has an average area of 0.01 km2 (0.0039 sq mi) and in 2006 it had a volume of 30,000 m3 (1,100,000 cu ft).

<span class="mw-page-title-main">Glacial stream</span> Body of liquid water that flows down a channel formed by a glacier

A glacier stream is a channelized area that is formed by a glacier in which liquid water accumulates and flows. Glacial streams are also commonly referred to as "glacier stream" or/and "glacial meltwater stream". The movement of the water is influenced and directed by gravity and the melting of ice. The melting of ice forms different types of glacial streams such as supraglacial, englacial, subglacial and proglacial streams. Water enters supraglacial streams that sit at the top of the glacier via filtering through snow in the accumulation zone and forming slush pools at the FIRN zone. The water accumulates on top of the glacier in supraglacial lakes and into supraglacial stream channels. The meltwater then flows through various different streams either entering inside the glacier into englacial channels or under the glacier into subglacial channels. Finally, the water leaves the glacier through proglacial streams or lakes. Proglacial streams do not only act as the terminus point but can also receive meltwater. Glacial streams can play a significant role in energy exchange and in the transport of meltwater and sediment.

<span class="mw-page-title-main">Quelccaya Ice Cap</span> Glacier in Peru

The Quelccaya Ice Cap is the second largest glaciated area in the tropics, after Coropuna. Located in the Cordillera Oriental section of the Andes mountains in Peru, the cap covers an area of 42.8 square kilometres (16.5 sq mi) with ice up to 200 metres (660 ft) thick. It is surrounded by tall ice cliffs and a number of outlet glaciers, the largest of which is known as Qori Kalis Glacier; lakes, moraines, peat bogs and wetlands are also present. There is a rich flora and fauna, including birds that nest on the ice cap. Quelccaya is an important source of water, eventually melting and flowing into the Inambari and Vilcanota Rivers.

<span class="mw-page-title-main">Glacier head</span> Top of a glacier

A glacier head is the top of a glacier. Although glaciers seem motionless to the observer they are in constant motion and the terminus is always either advancing or retreating.

References

Footnotes

  1. Approximations. Snow line elevations retrieved from Google Earth on 2014-08-20
  2. 1 2 Vijay P. Singh; Pratap Singh; Umesh K. Haritashya (2011). Encyclopedia of Snow, Ice and Glaciers . Springer Science & Business Media. pp.  1024. ISBN   978-90-481-2642-2.
  3. 1 2 David Waugh (2000). Geography: An Integrated Approach. Nelson Thornes. p. 105. ISBN   978-0-17-444706-1.
  4. Ohmura, Atsumu; Kasser, Peter; Funk, Martin (1992). "Climate at the Equilibrium Line of Glaciers". Journal of Glaciology. 38 (130): 397–411. Bibcode:1992JGlac..38..397O. doi: 10.3189/S0022143000002276 . ISSN   0022-1430.
  5. Leonard, Katherine C.; Fountain, Andrew G. (2003). "Map-based methods for estimating glacier equilibrium-line altitudes". Journal of Glaciology. 49 (166): 329–336. Bibcode:2003JGlac..49..329L. doi: 10.3189/172756503781830665 . ISSN   0022-1430.
  6. Regional Climate and Snow/Glacier Distribution in Southern Upper Atacama (Ojos del Salado) – an integrated statistical, GIS and RS based approach