Land surface effects on climate

Last updated

Land surface effects on climate are wide-ranging and vary by region. Deforestation and exploitation of natural landscapes play a significant role. Some of these environmental changes are similar to those caused by the effects of global warming. [1] [2] [3]

Contents

Deforestation effects

Major land surface changes affecting climate include deforestation (especially in tropical areas), [4] [5] [6] [7] [8] and destruction of grasslands and xeric woodlands by overgrazing, or lack of grazing. These changes in the natural landscape reduce evapotranspiration, and thus water vapor, in the atmosphere, limiting clouds and precipitation. It has been proposed, in the journal Atmospheric Chemistry and Physics, that evaporation rates from forested areas may exceed that of the oceans, creating zones of low pressure, which enhance the development of storms and rainfall through atmospheric moisture recycling. [9] The American Institute of Biological Sciences published a similar paper in support of this concept in 2009. [10] In addition, with deforestation and/or destruction of grasslands, the amount of dew harvested (or condensed) by plants is greatly diminished. [11] [12] [13] All of this contributes to desertification in these regions.

25-50% of the rainfall in the Amazon basin comes from the forest, and if deforestation reaches 30-40% most of the Amazon basin will enter a permanent dry climate. [14] In another article published by Nature, it points out that tropical deforestation can lead to large reductions in observed precipitation. [15]

This concept of land-atmosphere feedback is common among permaculturists, such as Masanobu Fukuoka, who, in his book, The One Straw Revolution, said "rain comes from the ground, not the sky." [16] [17]

Deforestation, and conversion of grasslands to desert, may also lead to cooling of the regional climate. This is because of the albedo effect (sunlight reflected by bare ground) during the day, and rapid radiation of heat into space at night, due to the lack of vegetation and atmospheric moisture. [18]

Reforestation, conservation grazing, holistic land management, and, in drylands, water harvesting and keyline design, are examples of methods that might help prevent or lessen these drying effects. [19]

Mountain meteorological effects

Orographic lift

Orographic lift occurs when an air mass is forced from a low elevation to a higher elevation as it moves over rising terrain. As the air mass gains altitude it quickly cools down adiabatically, which can raise the relative humidity to 100% and create clouds and, under the right conditions, precipitation.[ citation needed ]

Rain shadow

A rain shadow is a dry area on the leeward side of a mountainous area (away from the wind). The mountains block the passage of rain-producing weather systems and cast a "shadow" of dryness behind them. Wind and moist air are drawn by the prevailing winds towards the top of the mountains, condensing and precipitating before it crosses the top. In an effect opposite that of orographic lift, the air, without much moisture left, advances behind the mountains, creating a drier side called the "rain shadow".[ citation needed ]

Foehn wind

A föhn or foehn is a type of dry, warm, down-slope wind that occurs in the lee (downwind side) of a mountain range.[ citation needed ]

Fohn can be initiated when deep low pressures move into Europe drawing moist Mediterranean air over the Alps. Storm Oratia 30 Oct 2000.jpg
Föhn can be initiated when deep low pressures move into Europe drawing moist Mediterranean air over the Alps.

It is a rain shadow wind that results from the subsequent adiabatic warming of air that has dropped most of its moisture on windward slopes (see orographic lift). As a consequence of the different adiabatic lapse rates of moist and dry air, the air on the leeward slopes becomes warmer than equivalent elevations on the windward slopes. Föhn winds can raise temperatures by as much as 14 °C (25 °F) [20] in just a matter of minutes. Central Europe enjoys a warmer climate due to the Föhn, as moist winds off the Mediterranean Sea blow over the Alps.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Geography of Cape Verde</span>

Cape Verde is a group of arid Atlantic islands which are home to distinct communities of plants, birds, and reptiles.

<span class="mw-page-title-main">Drought</span> Period with less precipitation than normal

A drought is a period of drier-than-normal conditions. A drought can last for days, months or years. Drought often has large impacts on the ecosystems and agriculture of affected regions, and causes harm to the local economy. Annual dry seasons in the tropics significantly increase the chances of a drought developing, with subsequent increased wildfire risks. Heat waves can significantly worsen drought conditions by increasing evapotranspiration. This dries out forests and other vegetation, and increases the amount of fuel for wildfires.

<span class="mw-page-title-main">Evapotranspiration</span> Natural processes of water movement within the water cycle

Evapotranspiration (ET) refers to the combined processes which move water from the Earth's surface into the atmosphere. It covers both water evaporation and transpiration. Evapotranspiration is an important part of the local water cycle and climate, and measurement of it plays a key role in water resource management agricultural irrigation.

<span class="mw-page-title-main">Water cycle</span> Biogeochemical cycle for movement of water on Earth

The water cycle, is a biogeochemical cycle that involves the continuous movement of water on, above and below the surface of the Earth. The mass of water on Earth remains fairly constant over time. However, the partitioning of the water into the major reservoirs of ice, fresh water, salt water and atmospheric water is variable and depends on climatic variables. The water moves from one reservoir to another, such as from river to ocean, or from the ocean to the atmosphere. The processes that drive these movements are evaporation, transpiration, condensation, precipitation, sublimation, infiltration, surface runoff, and subsurface flow. In doing so, the water goes through different forms: liquid, solid (ice) and vapor. The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation.

<span class="mw-page-title-main">Precipitation</span> Product of the condensation of atmospheric water vapor that falls under gravity

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor, so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation; their water vapor does not condense sufficiently to precipitate, so fog and mist do not fall. Two processes, possibly acting together, can lead to air becoming saturated with water vapor: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called showers.

<span class="mw-page-title-main">Foehn wind</span> Type of dry down-slope wind occurring near mountains

A Foehn, or Föhn, is a type of dry, relatively warm downslope wind that occurs in the lee of a mountain range. It is a rain shadow wind that results from the subsequent adiabatic warming of air that has dropped most of its moisture on windward slopes. As a consequence of the different adiabatic lapse rates of moist and dry air, the air on the leeward slopes becomes warmer than equivalent elevations on the windward slopes.

<span class="mw-page-title-main">Orographic lift</span> Air mass forced upwards as it moves over rising terrain

Orographic lift occurs when an air mass is forced from a low elevation to a higher elevation as it moves over rising terrain. As the air mass gains altitude it quickly cools down adiabatically, which can raise the relative humidity to 100% and create clouds and, under the right conditions, precipitation.

<span class="mw-page-title-main">Rain shadow</span> Leeward side of a mountain range

A rain shadow is an area of significantly reduced rainfall behind a mountainous region, on the side facing away from prevailing winds, known as its leeward side.

<span class="mw-page-title-main">Chinook wind</span> Warm, dry wind in North America

Chinook winds, or simply Chinooks, are two types of prevailing warm, generally westerly winds in western North America: Coastal Chinooks and interior Chinooks. The coastal Chinooks are persistent seasonal, wet, southwesterly winds blowing in from the ocean. The interior Chinooks are occasional warm, dry föhn winds blowing down the eastern sides of interior mountain ranges. The coastal Chinooks were the original term, used along the northwest coast, and the term in the interior of North America is later and derives from the coastal term.

<span class="mw-page-title-main">Tropical rainforest</span> Forest in areas with heavy rainfall in the tropics

Tropical rainforests are dense and warm rainforests with high rainfall typically found between 10° north and south of the Equator. They are a subset of the tropical forest biome that occurs roughly within the 28° latitudes. Tropical rainforests are a type of tropical moist broadleaf forest, that includes the more extensive seasonal tropical forests. True rainforests usually occur in tropical rainforest climates where no dry season occurs; all months have an average precipitation of at least 60 mm (2.4 in). Seasonal tropical forests with tropical monsoon or savanna climates are sometimes included in the broader definition.

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

<span class="mw-page-title-main">Berg wind</span> Wind in South Africa

Berg wind is the South African name for a katabatic wind: a hot dry wind blowing down the Great Escarpment from the high central plateau to the coast.

<span class="mw-page-title-main">Geography of South America</span>

The geography of South America contains many diverse regions and climates. Geographically, South America is generally considered a continent forming the southern portion of the landmass of the Americas, south and east of the Colombia–Panama border by most authorities, or south and east of the Panama Canal by some. South and North America are sometimes considered a single continent or supercontinent, while constituent regions are infrequently considered subcontinents.

<span class="mw-page-title-main">Precipitation types</span> Characters, formations, and phases of water condensed in the atmosphere

In meteorology, the different types of precipitation often include the character, formation, or phase of the precipitation which is falling to ground level. There are three distinct ways that precipitation can occur. Convective precipitation is generally more intense, and of shorter duration, than stratiform precipitation. Orographic precipitation occurs when moist air is forced upwards over rising terrain and condenses on the slope, such as a mountain.

<span class="mw-page-title-main">Holdridge life zones</span> Global bioclimatic scheme for the classification of land areas

The Holdridge life zones system is a global bioclimatic scheme for the classification of land areas. It was first published by Leslie Holdridge in 1947, and updated in 1967. It is a relatively simple system based on few empirical data, giving objective criteria. A basic assumption of the system is that both soil and the climax vegetation can be mapped once the climate is known.

<span class="mw-page-title-main">Rain</span> Precipitation in the form of water droplets

Rain is water droplets that have condensed from atmospheric water vapor and then fall under gravity. Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides water for hydroelectric power plants, crop irrigation, and suitable conditions for many types of ecosystems.

<span class="mw-page-title-main">Monsoon of South Asia</span> Monsoon in Indian subcontinent

The Monsoon of South Asia is among several geographically distributed global monsoons. It affects the Indian subcontinent, where it is one of the oldest and most anticipated weather phenomena and an economically important pattern every year from June through September, but it is only partly understood and notoriously difficult to predict. Several theories have been proposed to explain the origin, process, strength, variability, distribution, and general vagaries of the monsoon, but understanding and predictability are still evolving.

<span class="mw-page-title-main">Climatic regions of Argentina</span> Overview of climatic regions of Argentina

Due to its vast size and range of altitudes, Argentina possesses a wide variety of climatic regions, ranging from the hot subtropical region in the north to the cold subantarctic in the far south. The Pampas region lies between those and featured a mild and humid climate. Many regions have different, often contrasting, microclimates. In general, Argentina has four main climate types: warm, moderate, arid, and cold in which the relief features, and the latitudinal extent of the country, determine the different varieties within the main climate types.

<span class="mw-page-title-main">Biotic pump</span> Theory of how forests affect rainfall

The biotic pump is a theoretical concept that shows how forests create and control winds coming up from the ocean and in doing so bring water to the forests further inland.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

References

  1. "The Effect of Land Masses on Climate". PBS LearningMedia. Archived from the original on 2021-01-25. Retrieved 2016-05-17.
  2. "How does land-use change affect climate change?". Archived from the original on 2016-06-09. Retrieved 2016-05-17.
  3. Carleton, Thomas Loveland, Rezaul Mahmood, Toral Patel-Weynand, Krista Karstensen, Kari Beckendorf, Norman Bliss, and Andrew. "USGS Open-File Report 2012–1155: National Climate Assessment Technical Report on the Impacts of Climate and Land Use and Land Cover Change". pubs.usgs.gov. Archived from the original on 2018-08-21. Retrieved 2016-05-17.{{cite web}}: CS1 maint: multiple names: authors list (link)
  4. Zemp, Delphine; Schleussner, Carl-Friedrich; Barbosa, Henrique; Sampaio, Gilvan; Hirota, Marina; Rammig, Anja (12 April 2015). "Cascading effects of deforestation and drying trends on reduced forest resilience in the Amazon region". Archived from the original on 17 April 2021. Retrieved 16 May 2016 via ResearchGate.
  5. Zemp, Delphine; Schleussner, Carl-Friedrich; Barbosa, Henrique; Sampaio, Gilvan; Hirota, Marina; Rammig, Anja (2015). "Cascading effects of deforestation and drying trends on reduced forest resilience in the Amazon region". EGU General Assembly Conference Abstracts. 17: 15338. Bibcode:2015EGUGA..1715338Z.
  6. Robbins, Jim (9 October 2015). "Opinion - Deforestation and Drought". The New York Times . Archived from the original on 2021-04-11. Retrieved 2017-03-02.
  7. "Tropical drying trends in global warming models and observations". UCLA Atmospheric and Oceanic Sciences. Archived from the original on February 25, 2020. Retrieved May 13, 2016.
  8. Niiler, Eric (April 11, 2016). "Climate Change Is Drying Up Islands". Discovery News. Archived from the original on May 7, 2016. Retrieved May 13, 2016.
  9. A. M. Makarieva; V. G. Gorshkov; D. Sheil; A. D. Nobre; B.-L. Li (2013). "Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics" (PDF). Atmos. Chem. Phys. 13 (2): 1039–1056. arXiv: 1004.0355 . Bibcode:2013ACP....13.1039M. doi: 10.5194/acp-13-1039-2013 . Archived (PDF) from the original on 2020-07-30. Retrieved 2016-05-14.
  10. Sheil, Douglas & Daniel Murdiyarso (2009). "How forests attract rain: an examination of a new hypothesis" (PDF). BioScience. 59 (4): 341+. doi:10.1525/bio.2009.59.4.12. S2CID   85905766. Archived from the original (PDF) on 2013-03-19.
  11. Staniford, Stuart (December 29, 2011). "A Hypothesis about Global Drying". Early Warning. Archived from the original on August 29, 2017. Retrieved May 13, 2016.
  12. "Huge parts of world are drying up: Land 'evapotranspiration' taking unexpected turn". ScienceDaily. October 11, 2010. Archived from the original on November 11, 2020. Retrieved May 13, 2016.
  13. Peter Greve; Boris Orlowsky; Brigitte Mueller; Justin Sheffield; Markus Reichstein & Sonia I. Seneviratne (2014). "Global assessment of trends in wetting and drying over land". Nature Geoscience. 7 (10): 716–721. Bibcode:2014NatGe...7..716G. doi:10.1038/ngeo2247.
  14. Malhi, Yadvinder; Roberts, J. Timmons; Betts, Richard A.; Killeen, Timothy J.; Li, Wenhong; Nobre, Carlos A. (11 January 2008). "Climate Change, Deforestation, and the Fate of the Amazon". Science. 319 (5860): 169–172. Bibcode:2008Sci...319..169M. doi:10.1126/science.1146961. PMID   18048654. S2CID   33966731.
  15. Smith, C.; Baker, J. C. A.; Spracklen, D. V. (March 2023). "Tropical deforestation causes large reductions in observed precipitation". Nature. 615 (7951): 270–275. Bibcode:2023Natur.615..270S. doi:10.1038/s41586-022-05690-1. PMC   9995269 . PMID   36859548.
  16. "Rain comes from the ground not the sky, Fukuoka (masanobu fukuoka forum at permies)". www.permies.com. Archived from the original on 2016-09-23. Retrieved 2016-05-16.
  17. 1978 [1975 Sep.] The One-Straw Revolution: An Introduction to Natural Farming, translators Chris Pearce, Tsune Kurosawa and Larry Korn, Rodale Press.
  18. "Deforestation causes cooling, study shows". PhysOrg. November 16, 2011. Archived from the original on February 18, 2021. Retrieved May 13, 2016.
  19. Peter Westerveld (December 8, 2010). VIDEO: Reversing climate change is all very simple, says Peter Westerveld (YouTube). TEDxAmsterdam.
  20. "South Dakota Weather History and Trivia for January". National Weather Service Weather Forecast Office. February 8, 2006. See January 22 entry. Archived from the original on December 19, 2014. Retrieved November 13, 2016.