Ecological impact of explosives

Last updated

Ecological impacts of explosives are the effects that both unexploded explosives and post-explosion by-products have on the environment. [1] Explosive derived contaminants may have adverse effects on the environmental as well as human health.

Contents

In addition to their military use in warfare, explosives are also used in construction and demolition. Of greatest concern to the environment are secondary explosives, such as TNT, RDX, and HMX because they are produced and used in the greatest quantities. [2]

Explosives and their residual post explosion products can partition between multiple environmental compartments including aquatic, soil, atmosphere, and the biosphere. [2] [3]

Magnitude of exposure

Explosives have important applications in the military and in both mining and construction work. In fact, the manufacture of explosives comprises a large amount of the chemical industry. [4] In the course of their production, handling, loading, and disposal, explosives are released into the environment. It is there that they are dispersed by mechanical processes or dissolved or volatilized and partially converted to secondary products. [4] Over the past 150 years, millions of tons of explosives have been produced for military applications and other activities that have led to the accidental contamination of energetic materials in the soil and groundwater. [5] Exact numbers cannot be obtained and estimations are generally conservative, because people make their own bombs, which is not a small activity in regions dealing with armed conflict. The United States Army had estimated that over 1.2 million tons of soils have been contaminated with explosives on their training grounds alone. In the year 2004, it was estimated that 2,520,000 metric tons of explosive agents were sold for consumption in the United States alone. [6] Figure 1 shows the world consumption of explosives in 2008. [7]

Generally, explosives are dispersed mainly when used in combat. Most explosives are used as warfare agents by militaries globally. However, modern uses for 2,4,6-trinitrotoluene (TNT) are associated with construction and demolition, rather than combat. Because of its use in construction and demolition, it has become perhaps the most widespread explosive, and thus its toxicity is the most characterized and reported. The concentration of TNT in contaminated soil can reach 50 g kg−1 of soil, where the highest concentrations can be found on or near the surface. In the last decade, the United States Environmental Protection Agency (USEPA) has declared TNT a pollutant whose removal is priority. [8] The USEPA maintains that TNT levels in soil should not exceed 17.2 gram per kilogram of soil and 0.01 milligrams per liter of water. [5]

Degradation

Explosives and their post-explosion by-products may be degraded by abiotic processes that include hydrolysis, oxidation, or photolysis. Explosives may also be broken down through metabolism by microorganisms. [2]

See also

Related Research Articles

<span class="mw-page-title-main">RDX</span> Explosive chemical compound

RDX (abbreviation of "Research Department eXplosive") or hexogen, among other names, is an organic compound with the formula (O2N2CH2)3. It is white, odorless and tasteless, widely used as an explosive. Chemically, it is classified as a nitroamine alongside HMX, which is a more energetic explosive than TNT. It was used widely in World War II and remains common in military applications.

<span class="mw-page-title-main">TNT</span> Impact-resistant high explosive

Trinitrotoluene, more commonly known as TNT, more specifically 2,4,6-trinitrotoluene, and by its preferred IUPAC name 2-methyl-1,3,5-trinitrobenzene, is a chemical compound with the formula C6H2(NO2)3CH3. TNT is occasionally used as a reagent in chemical synthesis, but it is best known as an explosive material with convenient handling properties. The explosive yield of TNT is considered to be the standard comparative convention of bombs and asteroid impacts. In chemistry, TNT is used to generate charge transfer salts.

<span class="mw-page-title-main">Polychlorinated biphenyl</span> Chemical compound

Polychlorinated biphenyls (PCBs) are highly carcinogenic chemical compounds, formerly used in industrial and consumer products, whose production was banned in the United States by the Toxic Substances Control Act in 1979 and internationally by the Stockholm Convention on Persistent Organic Pollutants in 2001. They are organic chlorine compounds with the formula C12H10−xClx; they were once widely used in the manufacture of carbonless copy paper, as heat transfer fluids, and as dielectric and coolant fluids for electrical equipment.

<span class="mw-page-title-main">Ammonium nitrate</span> Chemical compound with formula NH4NO3

Ammonium nitrate is a chemical compound with the chemical formula NH4NO3. It is a white crystalline salt consisting of ions of ammonium and nitrate. It is highly soluble in water and hygroscopic as a solid, although it does not form hydrates. It is predominantly used in agriculture as a high-nitrogen fertilizer. Global production was estimated at 21.6 million tonnes in 2017.

<span class="mw-page-title-main">Environmental remediation</span> Removal of pollution from soil, groundwater etc.

Environmental remediation deals with the removal of pollution or contaminants from environmental media such as soil, groundwater, sediment, or surface water. Remedial action is generally subject to an array of regulatory requirements, and may also be based on assessments of human health and ecological risks where no legislative standards exist, or where standards are advisory.

<span class="mw-page-title-main">Bioremediation</span> Process used to treat contaminated media such as water and soil

Bioremediation broadly refers to any process wherein a biological system, living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physicochemical treatment methods bioremediation may offer considerable advantages as it aims to be sustainable, eco-friendly, cheap, and scalable. Most bioremediation is inadvertent, involving native organisms. Research on bioremediation is heavily focused on stimulating the process by inoculation of a polluted site with organisms or supplying nutrients to promote the growth. In principle, bioremediation could be used to reduce the impact of byproducts created from anthropogenic activities, such as industrialization and agricultural processes. Bioremediation could prove less expensive and more sustainable than other remediation alternatives.

<span class="mw-page-title-main">Phytoremediation</span> Decontamination technique using living plants

Phytoremediation technologies use living plants to clean up soil, air and water contaminated with hazardous contaminants. It is defined as "the use of green plants and the associated microorganisms, along with proper soil amendments and agronomic techniques to either contain, remove or render toxic environmental contaminants harmless". The term is an amalgam of the Greek phyto (plant) and Latin remedium. Although attractive for its cost, phytoremediation has not been demonstrated to redress any significant environmental challenge to the extent that contaminated space has been reclaimed.

<span class="mw-page-title-main">Soil contamination</span> Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting cleanups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modeling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

<span class="mw-page-title-main">TNT equivalent</span> Class of units of measurement for explosive energy

TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion. The ton of TNT is a unit of energy defined by that convention to be 4.184 gigajoules, which is the approximate energy released in the detonation of a metric ton of TNT. In other words, for each gram of TNT exploded, 4.184 kilojoules of energy are released.

<span class="mw-page-title-main">Weldon Spring Ordnance Works</span>

Weldon Spring Ordnance Works (WSOW) was a 17,323-acre (70.10 km2) U.S. Government-owned, contractor-operated (GOCO) facility in St. Charles County, Missouri, 55 km west of St. Louis. The site was originally operated by the Atlas Powder Company during World War II from 1941 to 1945 to produce explosives. The Atomic Energy Commission acquired part of the property in 1955, and Mallinckrodt, Inc. processed uranium ore from 1957 to 1966 under contract. The site has been divided into several parcels, and ownership has transferred over the years. Two portions of the original WSOW property are now Superfund sites that require substantial cleanup efforts. The environmental remediation of the WSOW site is currently designated as a major project of the Defense Environmental Restoration Program of the United States Department of Defense. Part of the original property is still used by the Army Reserve as the Weldon Spring Training Area.

<span class="mw-page-title-main">Construction waste</span> Unwanted material produced directly or incidentally by the construction industries

Construction waste or debris is any kind of debris from the construction process. Different government agencies have clear definitions. For example, the United States Environmental Protection Agency EPA defines construction and demolition materials as “debris generated during the construction, renovation and demolition of buildings, roads, and bridges.” Additionally, the EPA has categorized Construction and Demolition (C&D) waste into three categories: non-dangerous, hazardous, and semi-hazardous.

<span class="mw-page-title-main">Plutonium in the environment</span> Plutonium present within the environment

Since the mid-20th century, plutonium in the environment has been primarily produced by human activity. The first plants to produce plutonium for use in cold war atomic bombs were at the Hanford nuclear site, in Washington, and Mayak nuclear plant, in Chelyabinsk Oblast, Russia. Over a period of four decades, "both released more than 200 million curies of radioactive isotopes into the surrounding environment – twice the amount expelled in the Chernobyl disaster in each instance".

<span class="mw-page-title-main">Environment of Russia</span>

The environment of Russia

<span class="mw-page-title-main">Agricultural pollution</span> Type of pollution caused by agriculture

Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.

<span class="mw-page-title-main">Environmental effects of mining</span> Environmental problems from uncontrolled mining

Environmental effects of mining can occur at local, regional, and global scales through direct and indirect mining practices. Mining can cause in erosion, sinkholes, loss of biodiversity, or the contamination of soil, groundwater, and surface water by chemicals emitted from mining processes. These processes also affect the atmosphere through carbon emissions which contributes to climate change. Some mining methods may have such significant environmental and public health effects that mining companies in some countries are required to follow strict environmental and rehabilitation codes to ensure that the mined area returns to its original state.

<span class="mw-page-title-main">Louisiana Army Ammunition Plant</span> American munitions plant

The Louisiana Army Ammunition Plant, formerly known as the Louisiana Ordnance Plant or as The Shell Plant, is an inactive 14,974-acre (60.60 km2) plant to load, assemble and pack ammunitions items. During production from 1942 to 1994, the Army disposed of untreated explosives-laden wastewater in on-site lagoons, contaminating soil, sediments and groundwater with hazardous chemicals. It is a government-owned, contractor-operated facility located off U.S. Highway 80 in Webster Parish near Doyline between Minden and Bossier City, Louisiana. Part of LAAP is known as Camp Minden, a training center for the Louisiana Army National Guard. LAAP and Camp Minden have become nearly interchangeable terms, with most references to Camp Minden.

In situ chemical oxidation (ISCO), a form of advanced oxidation process, is an environmental remediation technique used for soil and/or groundwater remediation to lower the concentrations of targeted environmental contaminants to acceptable levels. ISCO is accomplished by introducing strong chemical oxidizers into the contaminated medium to destroy chemical contaminants in place. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation. The in situ in ISCO is just Latin for "in place", signifying that ISCO is a chemical oxidation reaction that occurs at the site of the contamination.

Pollution-induced community tolerance (PICT) is an approach to measuring the response of pollution-induced selective pressures on a community. It is an eco-toxicological tool that approaches community tolerance to pollution from a holistic standpoint. Community Tolerance can increase in one of three ways: physical adaptations or phenotypic plasticity, selection of favorable genotypes, and the replacement of sensitive species by tolerant species in a community.

Persistent, bioaccumulative and toxic substances (PBTs) are a class of compounds that have high resistance to degradation from abiotic and biotic factors, high mobility in the environment and high toxicity. Because of these factors PBTs have been observed to have a high order of bioaccumulation and biomagnification, very long retention times in various media, and widespread distribution across the globe. Most PBTs in the environment are either created through industry or are unintentional byproducts.

The Nebraska Ordnance Plant is a former United States Army ammunition plant located approximately ½ mile south of Mead, Nebraska and 30 miles west of Omaha, Nebraska in Saunders County. It originally extended across 17,250 acres (69.8 km2) producing weapons from 1942-45 after which the Army used it as a bomb factory during the Vietnam War. Environmental investigations in the 1980's found the soil and groundwater contaminated with the explosive RDX and the degreaser trichloroethylene. In 1990, federal agencies added the site to the National Priorities List as a Superfund site. Remediation included soil excavation and water treatment, the latter of which has been ongoing since 1997. Water is contained and treated at 4 treatment plants and the known plumes are monitored at hundreds of wells. The latest wells, dug deeper into the bedrock than previously, showed RDX and TCE above desired action levels in April 2016.

References

  1. Pennington JC, Brannon JM (February 2002). "Environmental fate of explosives". Thermochimica Acta. 384 (1–2): 163–172. doi:10.1016/S0040-6031(01)00801-2.
  2. 1 2 3 Juhasz AL, Naidu R (2007). "Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments". Rev Environ Contam Toxicol. Reviews of Environmental Contamination and Toxicology. 191: 163–215. doi:10.1007/978-0-387-69163-3_6. ISBN   978-0-387-69162-6. PMID   17708075.
  3. Kalderis D, Juhasz AL, Boopathy R, Comfort S (2011). "Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report)". Pure and Applied Chemistry. 83 (7): 1407–1484. doi: 10.1351/PAC-REP-10-01-05 .
  4. 1 2 Burrows EP, Rosenblatt DH, Mitchell WR, Parmer DL (1989). "Organic Explosives and Related Compounds: Environmental and Health Considerations" (PDF). Technical Report: US Army Biomedical Research and Development Laboratory. Archived (PDF) from the original on December 26, 2014.
  5. 1 2 Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010). "Application of advanced oxidation processes for TNT removal: A review". J. Hazard. Mater. 178 (1–3): 10–28. doi:10.1016/j.jhazmat.2010.02.042. PMID   20347218.
  6. Kramer D (2004). "Explosives" (PDF). U.S. Geological Survey Minerals Yearbook: 24.1–24.6.
  7. "Chemical Industries Newsletter". IHS Global Inc. 2009.{{cite journal}}: Cite journal requires |journal= (help)
  8. Esteve-Núñez A, Caballero A, Ramos JL (2001). "Biological degradation of 2,4,6-trinitrotoluene". Microbiol. Mol. Biol. Rev. 65 (3): 335–52, table of contents. doi:10.1128/MMBR.65.3.335-352.2001. PMC   99030 . PMID   11527999.