Community resilience

Last updated

Community resilience is the sustained ability of a community to use available resources (energy, communication, transportation, food, etc.) to respond to, withstand, and recover from adverse situations (e.g. economic collapse to global catastrophic risks). [1] This allows for the adaptation and growth of a community after disaster strikes. [2] Communities that are resilient are able to minimize any disaster, making the return to normal life as effortless as possible. By implementing a community resilience plan, a community can come together and overcome any disaster, while rebuilding physically and economically. [3] [4]

Contents

Due to its high complexity the discussion on resilient societies has increasingly been considered from an inter- and transdisciplinary scope.

Around 2010 the French-speaking discourse coined the notion of collapsology (collapse science), discussing the resilience of societal systems and possible scenarios for societal transformations in the face of a variety of factors, such as dependence on fossil fuels, overpopulation, loss of biodiversity, and instability of the financial system. The controversial term was created by Pablo Servigne (an agricultural engineer) who, with Raphaël Stevens, wrote the book Comment tout peut s'effondrer (literally, "How everything can collapse"). [5] Another, decidedly transdisciplinary approach which has been coined in late 2010s by German researcher Karim Fathi is the concept of "multiresilience" taking into account the fact that crises in the 21st century are interconnected, multi-dimensional and occurring on multiple system levels. Challenges such as the COVID-19 pandemic (individuals, organisations, societies alike) occur simultaneously, often even in interconnected and clustered forms. [6] [7] From a cross-disciplinary perspective, Karim Fathi outlines five systemic principles contributing to increased collective intelligence, responsiveness and creativity of societies in the face of multiple crises occurring simultaneously. [8] [9] Multiresilience is regarded as complementary to already established concepts for assessing and promoting societal resilience potentials. At the same time it criticises the fact that societal resilience has so far always been discussed from a mono-crisis persperctive. According to Karim Fathi, this onesided perspective" proves to be inadequate in terms of complexity, as societies in the 21st century have to deal with many global challenges - so-called „crisis-bundles“ - in the same time. Multiresilience aims to build up "basic robustness" in the sense of higher collective intelligence, which makes societies more capable of anticipating, reacting and solving problems in different crisis contexts. [10]

Community resilience planning

A community resilience plan is an action plan that allows for a community to rebuild after disaster. The plan should entail specific guidelines that will aid the community to rebuild both the economy and the ecosystem that the community thrives on. This typically means there are measures in place that a community will follow, such as the distribution of volunteers, and the access to knowledge and resources necessary to rebuild. Adaptability is a key attribute which means prevention can occur in response or before disaster strikes. The National Institute of Standards and Technology has a Community Resilience department tasked with solving this problem. [11] This agency has created a Community Resilience Planning Guide, and its aim is to assist communities with anticipating challenges through a practical application that takes into account the social needs of the community as well as dependencies on the "built environment" - buildings and infrastructure systems. [12] The outline of the six step process is shown below:

Classification of hazards

The scope of community resilience extends beyond natural disasters and include manmade events. [13] Below are an example of disasters communities face on a daily basis:

  1. Wind (hurricane, tornados)
  2. Earthquake (landslides, liquefaction)
  3. Inundation (flooding, coastal erosion)
  4. Fire (natural, manmade)
  5. Snow or rain (blizzards, tsunami)
  6. Technological or human-caused (cyberwarfare, nuclear weapons)
Hazard events that occur regularly and are typically less consequential events in terms of damage and recovery.
Hazard events that structures must be designed to withstand and often includes many natural disasters.
Hazard events may also found in building codes for some hazards; however, they are likely to cause significant and often irreparable damage.

Dependencies and cascading failures

Infrastructure systems such as buildings, water, electric power, transportation, and communication are all interconnected and interdependent networks or systems. [14] This means that a failure in one network can have catastrophic impact on another system. When Hurricane Katrina hit New Orleans, LA on August 23, 2005, it caused network outages in transportation and power networks which led to system failure and impedance in others such communication and emergency services.

For specific issues

Climate change

Climate resilience is defined as the "capacity of social, economic and ecosystems to cope with a hazardous event or trend or disturbance". [15] :7 This is done by "responding or reorganising in ways that maintain their essential function, identity and structure (as well as biodiversity in case of ecosystems) while also maintaining the capacity for adaptation, learning and transformation". [15] :7 The key focus of increasing climate resilience is to reduce the climate vulnerability that communities, states, and countries currently have with regards to the many effects of climate change. [16] Efforts to build climate resilience encompass social, economic, technological, and political strategies that are being implemented at all scales of society. From local community action to global treaties, addressing climate resilience is becoming a priority, although it could be argued that a significant amount of the theory has yet to be translated into practice. [17]

Climate resilience is related to climate change adaptation efforts. It aims to reduce climate change vulnerability and includes considerations of climate justice and equity. Practical implementations include climate resilient infrastructure, climate resilient agriculture and climate resilient development. Most objective approaches to measuring climate resilience use fixed and transparent definitions of resilience, and allow for different groups of people to be compared through standardised metrics.

See also

Related Research Articles

<span class="mw-page-title-main">Natural disaster</span> Major adverse event resulting from natural processes of the Earth

A natural disaster is the highly harmful impact on a society or community following a natural hazard event. Some examples of natural hazard events include: flooding, drought, earthquake, tropical cyclone, lightning, tsunami, volcanic activity, wildfire. A natural disaster can cause loss of life or damage property, and typically leaves economic damage in its wake. The severity of the damage depends on the affected population's resilience and on the infrastructure available. Scholars have been saying that the term natural disaster is unsuitable and should be abandoned. Instead, the simpler term disaster could be used, while also specifying the category of hazard. A disaster is a result of a natural or human-made hazard impacting a vulnerable community. It is the combination of the hazard along with exposure of a vulnerable society that results in a disaster.

<span class="mw-page-title-main">Sea level</span> Geographical reference point from which various heights are measured

Mean sea level is an average surface level of one or more among Earth's coastal bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datum – a standardised geodetic datum – that is used, for example, as a chart datum in cartography and marine navigation, or, in aviation, as the standard sea level at which atmospheric pressure is measured to calibrate altitude and, consequently, aircraft flight levels. A common and relatively straightforward mean sea-level standard is instead the midpoint between a mean low and mean high tide at a particular location.

A vulnerability assessment is the process of identifying, quantifying, and prioritizing the vulnerabilities in a system. Examples of systems for which vulnerability assessments are performed include, but are not limited to, information technology systems, energy supply systems, water supply systems, transportation systems, and communication systems. Such assessments may be conducted on behalf of a range of different organizations, from small businesses up to large regional infrastructures. Vulnerability from the perspective of disaster management means assessing the threats from potential hazards to the population and to infrastructure. It may be conducted in the political, social, economic or environmental fields.

<span class="mw-page-title-main">Climate change adaptation</span> Process of adjusting to effects of climate change

Climate change adaptation is the process of adjusting to the effects of climate change. These can be both current or expected impacts. Adaptation aims to moderate or avoid harm for people. It also aims to exploit opportunities. Humans may also intervene to help adjustment for natural systems. There are many adaptation strategies or options.They can help manage impacts and risks to people and nature. We can classify adaptation actions in four ways. These are infrastructural and technological; institutional; behavioural and cultural; and nature-based options.

Adaptive capacity relates to the capacity of systems, institutions, humans and other organisms to adjust to potential damage, to take advantage of opportunities, or to respond to consequences. In the context of ecosystems, adaptive capacity is determined by genetic diversity of species, biodiversity of particular ecosystems in specific landscapes or biome regions. In the context of coupled socio-ecological social systems, adaptive capacity is commonly associated with the following characteristics: Firstly, the ability of institutions and networks to learn, and store knowledge and experience. Secondly, the creative flexibility in decision making, transitioning and problem solving. And thirdly, the existence of power structures that are responsive and consider the needs of all stakeholders.

<span class="mw-page-title-main">Disaster risk reduction</span> Preventing new and reducing existing disaster risk factors

Disaster risk reduction (DRR) sometimes called disaster risk management (DRM) is a systematic approach to identifying, assessing and reducing the risks of disaster. It aims to reduce socio-economic vulnerabilities to disaster as well as dealing with the environmental and other hazards that trigger them. The most commonly cited definition of Disaster risk reduction is one used by UN agencies such as United Nations Office for Disaster Risk Reduction (UNDRR) and the United Nations Development Programme (UNDP): "DRR is aimed at preventing new and reducing existing disaster risk and managing residual risk, all of which contribute to strengthening resilience and therefore to the achievement of sustainable development".

Climate risk refers to risk assessments based on formal analysis of the consequences, likelihoods and responses to the impacts of climate change and how societal constraints shape adaptation options. Common approaches to risk assessment and risk management strategies based on natural hazards have been applied to climate change impacts although there are distinct differences. Based on a climate system that is no longer staying within a stationary range of extremes, climate change impacts are anticipated to increase for the coming decades despite mitigation efforts. Ongoing changes in the climate system complicates assessing risks. Applying current knowledge to understand climate risk is further complicated due to substantial differences in regional climate projections, expanding numbers of climate model results, and the need to select a useful set of future climate scenarios in their assessments.

<span class="mw-page-title-main">Ecological resilience</span> Capacity of ecosystems to resist and recover from change

In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and recovering quickly. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities such as deforestation, fracking of the ground for oil extraction, pesticide sprayed in soil, and the introduction of exotic plant or animal species. Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem and may force an ecosystem to reach a threshold beyond which a different regime of processes and structures predominates. When such thresholds are associated with a critical or bifurcation point, these regime shifts may also be referred to as critical transitions.

Kalissaye Avifaunal Reserve (KAR) is a small nature reserve in Senegal, located at the mouth of Kalissaye Pond in the middle of the Casamance River.

<span class="mw-page-title-main">Water security</span> A goal of water management to harness water-related opportunities and manage risks

The aim of water security is to make the most of water's benefits for humans and ecosystems. The second aim is to limit the risks of destructive impacts of water to an acceptable level. These risks include for example too much water (flood), too little water or poor quality (polluted) water. People who live with a high level of water security always have access to "an acceptable quantity and quality of water for health, livelihoods and production". For example, access to WASH services is one component of water security. Some organizations use the term water security more narrowly for water supply aspects only.

<span class="mw-page-title-main">Urban resilience</span> Ability of a city to function after a crisis

Urban resilience has conventionally been defined as the "measurable ability of any urban system, with its inhabitants, to maintain continuity through all shocks and stresses, while positively adapting and transforming towards sustainability".

Vulnerability refers to "the quality or state of being exposed to the possibility of being attacked or harmed, either physically or emotionally."

<span class="mw-page-title-main">United Nations Office for Disaster Risk Reduction</span> United Nations organization

The United Nations Office for Disaster Risk Reduction (UNDRR) was created in December 1999 to ensure the implementation of the International Strategy for Disaster Reduction.

<span class="mw-page-title-main">Resilience (engineering and construction)</span> Infrastructure design able to absorb damage without suffering complete failure

In the fields of engineering and construction, resilience is the ability to absorb or avoid damage without suffering complete failure and is an objective of design, maintenance and restoration for buildings and infrastructure, as well as communities. A more comprehensive definition is that it is the ability to respond, absorb, and adapt to, as well as recover in a disruptive event. A resilient structure/system/community is expected to be able to resist to an extreme event with minimal damages and functionality disruptions during the event; after the event, it should be able to rapidly recovery its functionality similar to or even better than the pre-event level.

Climate resilience is defined as the "capacity of social, economic and ecosystems to cope with a hazardous event or trend or disturbance". This is done by "responding or reorganising in ways that maintain their essential function, identity and structure while also maintaining the capacity for adaptation, learning and transformation". The key focus of increasing climate resilience is to reduce the climate vulnerability that communities, states, and countries currently have with regards to the many effects of climate change. Efforts to build climate resilience encompass social, economic, technological, and political strategies that are being implemented at all scales of society. From local community action to global treaties, addressing climate resilience is becoming a priority, although it could be argued that a significant amount of the theory has yet to be translated into practice.

<span class="mw-page-title-main">Medina of Sousse, Tunisia</span> Historic site in Governorate of Sousse, Tunisia

The Medina of Sousse is a Medina quarter in Sousse, Governorate of Sousse, Tunisia. Designated by the UNESCO a World Heritage Site in 1988, it is a typical example of the architecture of the early centuries of Islam in Maghreb. It encompasses a Kasbah, fortifications and the Great Mosque of Sousse. The Medina today houses the Archaeological Museum of Sousse. A number of Punic steles were discovered in the Medina, between the Ribat and the Great Mosque, in the 19th and 20th centuries.

<span class="mw-page-title-main">Sustainable Development Goal 13</span> UN goal to combat climate change

Sustainable Development Goal 13 is to limit and adapt to climate change. It is one of 17 Sustainable Development Goals established by the United Nations General Assembly in 2015. The official mission statement of this goal is to "Take urgent action to combat climate change and its impacts". SDG 13 and SDG 7 on clean energy are closely related and complementary.

<span class="mw-page-title-main">Climate change vulnerability</span> Assessment of relative vulnerability to climate change and its effects

Climate change vulnerability is a concept that describes how strongly people or ecosystems are likely to be affected by climate change. It is defined as the "propensity or predisposition to be adversely affected" by climate change. It can apply to humans and also to natural systems. Related concepts include climate sensitivity and the ability, or lack thereof, to cope and adapt. Vulnerability is a component of climate risk. Vulnerability differs within communities and across societies, regions, and countries, and can increase or decrease over time.

The time value of carbon is a conjecture that there is a greater benefit from reducing carbon dioxide emissions immediately than reducing the same amount of emissions in the future. According to this conjecture, carbon emissions are subject to a discount rate, similar to money, which means that the timing of carbon emissions is important to consider alongside their magnitude. This is not to be confused with the monetary discount rate applied to carbon emission or sequestration projects. Rather, it is a discount rate applied to the physical carbon itself.

<span class="mw-page-title-main">C. Emdad Haque</span>

C. Emdad Haque is a Canadian academic, environmentalist, and author. He is a professor in the Natural Resources Institute of the Clayton H. Riddell Faculty of Environment, Earth, and Resources at the University of Manitoba and Chief Technical Advisor at the Bangabandhu Centre of Bangladesh Studies in Canada.

References

  1. Bosher, Lee; Chmutina, Ksenia (April 3, 2017). Disaster Risk Reduction for the Built Environment. 111 River Street. Hoboken, NJ 07030: John Wiley & Sons. p. 32. ISBN   9781118921500.{{cite book}}: CS1 maint: location (link)
  2. Fran H., Norris; Susan P., Stevens (March 2008). "Community Resilience as a Metaphor, Theory, Set of Capacities, and Strategy for Disaster Readiness". American Journal of Community Psychology. 41 (1–2): 127–150. doi:10.1007/s10464-007-9156-6. PMID   18157631. S2CID   45612103.
  3. Sharifi, Ayyoob (October 2016). "A critical review of selected tools for assessing community resilience". Ecological Indicators. 69: 629–647. doi: 10.1016/j.ecolind.2016.05.023 .
  4. Sharifi, Ayyoob; Yamagata, Yoshiki (September 2016). "On the suitability of assessment tools for guiding communities towards disaster resilience". International Journal of Disaster Risk Reduction. 18: 115–124. Bibcode:2016IJDRR..18..115S. doi:10.1016/j.ijdrr.2016.06.006.
  5. "Pablo Servigne: "Je défends un catastrophisme positif"". Usbek & Rica (in French). 2016-08-10. Retrieved 2020-02-03.
  6. Karim Fathi: Die multi-resiliente Gesellschaft: Ansatzpunkte für die Corona-Krise und darüber hinaus. In: Forschungsjournal Soziale Bewegungen, Vol. 33, Issue 1, 2020.
  7. Fathi, K. (2022): Multi-Resilience – Development – Sustainability: Requirements for Securing the Future of Societies in the 21st Century. Springer
  8. Karim Fathi: Resilienz im Spannungsfeld zwischen Nachhaltigkeit und Entwicklung - gesellschaftliche Zukunftssicherung im 21. Jahrhundert. Springer, 2019
  9. Fathi, K. (2022): Multi-Resilience – Development – Sustainability: Requirements for Securing the Future of Societies in the 21st Century. Springer
  10. Fathi, K. (2022): Multi-Resilience – Development – Sustainability: Requirements for Securing the Future of Societies in the 21st Century. Springer
  11. "Topics | NIST". www.nist.gov. Archived from the original on 2017-11-10.
  12. "Topics | NIST". www.nist.gov. Archived from the original on 2017-11-10.
  13. Patel, Sonny S.; Rogers, M. Brooke; Amlôt, Richard; Rubin, G. James (February 2017). "What Do We Mean by 'Community Resilience'? A Systematic Literature Review of How It Is Defined in the Literature". PLOS Currents: Disasters. 1. PMC   5693357 . PMID   29188132.
  14. Guidotti, Roberto; Chmielewski, Hana (September 2016). "Modeling the resilience of critical infrastructure: the role of network dependencies". Sustainable and Resilient Infrastructure. 1 (3–4): 153–159. doi:10.1080/23789689.2016.1254999. PMC   5557302 . PMID   28825037.
  15. 1 2 IPCC, 2022: Summary for Policymakers [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3–33, doi:10.1017/9781009325844.001.
  16. Venema, Hank, and Jennifer Temmer. "Building a Climate-Resilient City: The Built Environment." International Institute for Sustainable Development, 2017.
  17. Milstein, T. & Castro-Sotomayor, J. (2020). Routledge Handbook of Ecocultural Identity. London, UK: Routledge. https://doi.org/10.4324/9781351068840