Climate change is already now altering biomes, adversely affecting terrestrial and marine ecosystems. [2] [3] Climate change represents long-term changes in temperature and average weather patterns. [4] [5] This leads to a substantial increase in both the frequency and the intensity of extreme weather events. [6] As a region's climate changes, a change in its flora and fauna follows. [7] For instance, out of 4000 species analyzed by the IPCC Sixth Assessment Report, half were found to have shifted their distribution to higher latitudes or elevations in response to climate change. [8]
Furthermore, climate change may cause ecological disruption among interacting species, via changes in behaviour and phenology, or via climate niche mismatch. [9] For example, climate change can cause species to move in different directions, potentially disrupting their interactions with each other. [10] [11]
Examples of effects on some biome types are provided in the following.[ clarification needed ][ where? ] Research into desertification is complex, and there is no single metric which can define all aspects. However, more intense climate change is still expected to increase the current extent of drylands on the Earth's continents. Most of the expansion will be seen over regions such as "southwest North America, the northern fringe of Africa, southern Africa, and Australia". [12]
Mountains cover approximately 25 percent of the Earth's surface and provide a home to more than one-tenth of the global human population. Changes in global climate pose a number of potential risks to mountain habitats. [13]
Boreal forests, also known as taiga, are warming at a faster rate than the global average, [14] leading to drier conditions in the Taiga, which leads to a whole host of subsequent impacts. [15] Climate change has a direct impact on the productivity of the boreal forest, as well as its health and regeneration. [15]
Almost no other ecosystem is as vulnerable to climate change as coral reefs. Updated 2022 estimates show that even at a global average increase of 1.5 °C (2.7 °F) over pre-industrial temperatures, only 0.2% of the world's coral reefs would still be able to withstand marine heatwaves, as opposed to 84% being able to do so now, with the figure dropping to 0% at 2 °C (3.6 °F) warming and beyond. [16] [17]
On Earth, biomes are the main constituent parts of the biosphere, defined by a distinctive biological community and a shared regional climate. [18] [19] [20] A single biome would include multiple ecosystems and ecoregions. According to the World Wildlife Fund classification, terrestrial, marine and freshwater environments each consist of hundreds of ecoregions, around a dozen biome types, and a single-digit number of biogeographic regions. [21] [22] [23] [24]
The 2007 IPCC Fourth Assessment Report concluded that over the last three decades human-induced warming had likely had an influence on many biological systems. [25] [26] [27] The Sixth Assessment Report found that half of all species with long-term data had shifted their ranges poleward (or upward for mountain species). Two-thirds have had their spring events occur earlier. [8] Several European bird species' breeding seasons have been shifted to earlier periods, as indicated by the shifts in nestling ringing dates. [28] The range of hundreds of North American birds has shifted northward at an average rate of 1.5 km/year over the past 55 years. [29]
Furthermore, climate change may disrupt the ecology among interacting species, via changes on behaviour and phenology, or via climate niche mismatch. [9] The disruption of species-species associations is a potential consequence of climate-driven movements of each individual species in opposite directions. [10] [11] Climate change may, thus, lead to another extinction, more silent and mostly overlooked: the extinction of species' interactions. As a consequence of the spatial decoupling of species-species associations, ecosystem services derived from biotic interactions are also at risk from climate niche mismatch. [9]
Whole ecosystem disruptions will occur earlier under more intense climate change: under the high-emissions RCP8.5 scenario, ecosystems in the tropical oceans would be the first to experience abrupt disruption before 2030, with tropical forests and polar environments following by 2050. In total, 15% of ecological assemblages would have over 20% of their species abruptly disrupted if as warming eventually reaches 4 °C (7.2 °F); in contrast, this would happen to fewer than 2% if the warming were to stay below 2 °C (3.6 °F). [30]
Research into desertification is complex, and there is no single metric which can define all aspects. However, more intense climate change is still expected to increase the current extent of drylands on the Earth's continents: from 38% in late 20th century to 50% or 56% by the end of the[ which? ] century, under the "moderate" and high-warming Representative Concentration Pathways 4.5 and 8.5. Most of the expansion will be seen over regions such as "southwest North America, the northern fringe of Africa, southern Africa, and Australia". [12]
Many of the species at risk are Arctic and Antarctic fauna such as polar bears [38] Climate change is also leading to a mismatch between the snow camouflage of arctic animals such as snowshoe hares with the increasingly snow-free landscape. [39]
Mountains cover approximately 25 percent of earth's surface and provide a home to more than one-tenth of global human population. Changes in global climate pose a number of potential risks to mountain habitats. [13] Climate change can adversely affect both alpine tundra and montane grasslands and shrublands. It increases the number of extreme events such as the frequency and intensity of forest fires, [48] and accelerates snowmelt, which makes more water available earlier in the year and reduces availability later in the year, while the reduction in snow cover insulation can paradoxically increase cold damage from springtime frost events. [49] [50] It also causes remarkable changes in phenology. [51] [52]
Studies suggest a warmer climate would cause lower-elevation habitats to expand into the higher alpine zone. [53] Such a shift would encroach on rare alpine meadows and other high-altitude habitats. High-elevation plants and animals have limited space available for new habitat as they move higher on the mountains in order to adapt to long-term changes in regional climate. Such uphill shifts of both ranges and abundances have been recorded for various groups of species across the world. [54] In some mountain areas, such as the Himalayas, climate change appears to promote the appearance of various invasive species of shrubs, eventually converting them to shrublands. [55] Changes in precipitation appear to be the most important driver. [56] [57]
Boreal forests, also known as taiga, are warming at a faster rate than the global average. [14] leading to drier conditions in the Taiga, which leads to a whole host of subsequent issues. [15] Climate change has a direct impact on the productivity of the boreal forest, as well as health and regeneration. [15] As a result of the rapidly changing climate, trees show declines in growth at the southern limit of their range, [62] and are migrating to higher latitudes and altitudes (northward) to remain their climatic habitat, but some species may not be migrating fast enough. [63] [64] [65] The number of days with extremely cold temperatures (e.g., −20 to −40 °C (−4 to −40 °F) has decreased irregularly but systematically in nearly all the boreal region, allowing better survival for tree-damaging insects. [66] The 10-year average of boreal forest burned in North America, after several decades of around 10,000 km2 (2.5 million acres), has increased steadily since 1970 to more than 28,000 km2 (7 million acres) annually., [67] and records in Canada show increases in wildfire from 1920 to 1999. [68]
Early 2010s research confirmed that since the 1960s, western Canadian boreal forests, and particularly the western coniferous forests, [69] had already suffered substantial tree losses due to drought, and some conifers were getting replaced with aspen. [15] Similarly, the already dry forest areas in central Alaska and far eastern Russia are also experiencing greater drought, [70] placing birch trees under particular stress, [71] while Siberia's needle-shedding larches are replaced with evergreen conifers - a change which also affects the area's albedo (evergreen trees absorb more heat than the snow-covered ground) and acts as a small, yet detectable climate change feedback. [72] At the same time, eastern Canadian forests have been much less affected; [73] [74] yet some research suggests it would also reach a tipping point around 2080, under the RCP 8.5 scenario which represents the largest potential increase in anthropogenic emissions. [75]
It has been hypothesized that the boreal environments have only a few states which are stable in the long term - a treeless tundra/steppe, a forest with >75% tree cover and an open woodland with ~20% and ~45% tree cover. Thus, continued climate change would be able to force at least some of the presently existing taiga forests into one of the two woodland states or even into a treeless steppe - but it could also shift tundra areas into woodland or forest states as they warm and become more suitable for tree growth. [76] Consistent with that, a Landsat analysis of 100,000 undisturbed sites found that the areas with low tree cover became greener in response to warming, but areas with a lot of trees got more "brown" as some of them died due to the same. [77]
In Alaska, the growth of white spruce trees is stunted by unusually warm summers, while trees on some of the coldest fringes of the forest are experiencing faster growth than previously. [78] At a certain stage, such shifts could become effectively irreversible, making them tipping points in the climate system, and a major assessment designated both processes - reversion of southern boreal forests to grasslands and the conversion of tundra areas to boreal forest - as separate examples of such, which would likely become unstoppable around 4 °C (7.2 °F), though they would still take at least 50 years, if not a century or more. However, the certainty level is still limited; there's an outside possibility that 1.5 °C (2.7 °F) would be enough to lock in either of the two shifts; on the other hand, reversion to grassland may require 5 °C (9.0 °F), and the replacement of tundra 7.2 °C (13.0 °F). [79] [80]
Forest expansion is likely to take longer than decline, as juveniles of boreal species are the worst-affected by the climate shifs, while the temperate species capable of replacing them have slower growth rates. [81] Disappearance of forest also causes detectable carbon emissions, while gain acts as a carbon sink: yet the changes in albedo more than outweigh that in terms of climate impact. [79] [80]
In the western U.S., since 1986, longer, warmer summers have resulted in a fourfold increase in major wildfires and a sixfold increase in the area of forest burned, compared to the period from 1970 to 1986. While fire suppression policies have played a substantial role as well, both healthy and unhealthy forests now face an increased risk of forest fires because of the warming climate. [82] [83]
A 2018 study found that trees grow faster due to increased carbon dioxide levels; however, the trees are also 8–12 percent lighter and denser since 1900. The authors note, "Even though a greater volume of wood is being produced today, it now contains less material than just a few decades ago." [84]
Historically, a few days of extreme cold would kill most mountain pine beetles and keep their outbreaks contained. Since 1998, the lack of severe winters in British Columbia had enabled a devastating pine beetle infestation, which had killed 33 million acres or 135,000 km2 by 2008; [85] [86] a level an order of magnitude larger than any previously recorded outbreak. [87] [88] Such losses can match an average year of forest fires in all of Canada or five years worth of emissions from its transportation. [87] [89]
Climate change and the associated changing weather patterns occurring worldwide have a direct effect on biology, population ecology, and the population of eruptive insects, such as the mountain pine beetle. This is because temperature is a factor which determines insect development and population success. [90] Prior to climatic and temperature changes, the mountain pine beetle predominately lived and attacked lodgepole and ponderosa pine trees at lower elevations, as the higher elevation Rocky Mountains and Cascades were too cold for their survival. [91] Under normal seasonal freezing weather conditions in the lower elevations, the forest ecosystems that pine beetles inhabit are kept in balance by factors such as tree defense mechanisms, beetle defense mechanisms, and freezing temperatures. It is a simple relationship between a host (the forest), an agent (the beetle) and the environment (the weather and temperature). [92] However, as climate change causes mountain areas to become warmer and drier, pine beetles have more power to infest and destroy the forest ecosystems, such as the whitebark pine forests of the Rocky Mountains. [92] Increased temperatures also allow the pine beetle to increase their life cycle by 100%[ clarification needed ]: it only takes a single year instead of two for the pine beetle to develop. As the Rockies have not adapted to deal with pine beetle infestations, they lack the defenses to fight the beetles. [92]
The Amazon rainforest is the largest tropical rainforest in the world. It is twice as big as India and spans nine countries in South America. This size allows it to produce around half of its own rainfall by recycling moisture through evaporation and transpiration as air moves across the forest; [93] tree losses interfere with that capability, to the point where if enough is lost, much of the rest will likely die off and transform into a dry savanna landscape. [94] For now, deforestation of the Amazon rainforest has been the greatest threat to it, and the main reason why, as of 2022, about 20% of it had been deforested and another 6% "highly degraded". [95] Yet, climate change is also a threat as it exacerbates wildfire and interferes with precipitation. It is considered likely that hitting 3.5 °C (6.3 °F) of global warming would trigger the collapse of rainforest to savannah over the course of around a century (50-200) years, although it occur at between 2 °C (3.6 °F) to 6 °C (11 °F) of warming. [79] [80]
Forest fires in Indonesia have dramatically increased since 1997 as well. These fires are often actively started to clear forest for agriculture. They can set fire to the large peat bogs in the region and the CO2 released by these peat bog fires has been estimated, in an average year, to be 15% of the quantity of CO2 produced by fossil fuel combustion. [96] [97]
Research suggests that slow-growing trees are only stimulated in growth for a short period under higher CO2 levels, while faster growing plants like liana benefit in the long term. In general, but especially in rainforests, this means that liana become the prevalent species; and because they decompose much faster than trees their carbon content is more quickly returned to the atmosphere. Slow growing trees incorporate atmospheric carbon for decades. [98]
Warmer-than-ideal conditions result in higher metabolism and consequent reductions in body size despite increased foraging, which in turn elevates the risk of predation. Indeed, even a slight increase in temperature during development impairs growth efficiency and survival rate in rainbow trout. [99]
Many species of freshwater and saltwater plants and animals are dependent on glacier-fed waters to ensure a cold water habitat that they have adapted to. Some species of freshwater fish need cold water to survive and to reproduce, and this is especially true with salmon and cutthroat trout. Reduced glacier runoff can lead to insufficient stream flow to allow these species to thrive. Ocean krill, a cornerstone species, prefer cold water and are the primary food source for aquatic mammals such as the blue whale. [101]
In general, freshwater bodies such as streams can be strongly affected by heatwaves. However, the impact could vary strongly depending on the presence or absence of predators in the stream community. In their absence, the impacts are much more severe and the local extinction of most species could occur, homogenizing the community. [102] Species of fish living in cold or cool water can see a reduction in population of up to 50% in the majority of U.S. freshwater streams, according to most climate change models. [103] The increase in metabolic demands due to higher water temperatures, in combination with decreasing amounts of food will be the main contributors to their decline. [103] Additionally, many fish species (such as salmon) use seasonal water levels of streams as a means of reproducing, typically breeding when water flow is high and migrating to the ocean after spawning. [103] Because snowfall is expected to be reduced due to climate change, water runoff is expected to decrease which leads to lower flowing streams, affecting the spawning of millions of salmon. [103] To add to this, rising seas will begin to flood coastal river systems, converting them from fresh water habitats to saline environments where indigenous species will likely perish. In southeast Alaska, the sea rises by 3.96 cm/year, redepositing sediment in various river channels and bringing salt water inland. [103] This rise in sea level not only contaminates streams and rivers with saline water, but also the reservoirs they are connected to, where species such as sockeye salmon live. Although this species of Salmon can survive in both salt and fresh water, the loss of a body of fresh water stops them from reproducing in the spring, as the spawning process requires fresh water. [103]
In the Arctic, the waters of Hudson Bay are ice-free for three weeks longer than they were thirty years ago, affecting polar bears, which prefer to hunt on sea ice. [104] Species that rely on cold weather conditions such as gyrfalcons, and snowy owls that prey on lemmings that use the cold winter to their advantage may be negatively affected. [105] [106]
A biome is a distinct geographical region with specific climate, vegetation, and animal life. It consists of a biological community that has formed in response to its physical environment and regional climate. Biomes may span more than one continent. A biome encompasses multiple ecosystems within its boundaries. It can also comprise a variety of habitats.
Taiga or tayga, also known as boreal forest or snow forest, is a biome characterized by coniferous forests consisting mostly of pines, spruces, and larches. The taiga or boreal forest is the world's largest land biome. In North America, it covers most of inland Canada, Alaska, and parts of the northern contiguous United States. In Eurasia, it covers most of Sweden, Finland, much of Russia from Karelia in the west to the Pacific Ocean, much of Norway and Estonia, some of the Scottish Highlands, some lowland/coastal areas of Iceland, and areas of northern Kazakhstan, northern Mongolia, and northern Japan.
A grassland is an area where the vegetation is dominated by grasses (Poaceae). However, sedge (Cyperaceae) and rush (Juncaceae) can also be found along with variable proportions of legumes, such as clover, and other herbs. Grasslands occur naturally on all continents except Antarctica and are found in most ecoregions of the Earth. Furthermore, grasslands are one of the largest biomes on Earth and dominate the landscape worldwide. There are different types of grasslands: natural grasslands, semi-natural grasslands, and agricultural grasslands. They cover 31–69% of the Earth's land area.
An ecological or environmental crisis occurs when changes to the environment of a species or population destabilizes its continued survival. Some of the important causes include:
The tree line is the edge of a habitat at which trees are capable of growing and beyond which they are not. It is found at high elevations and high latitudes. Beyond the tree line, trees cannot tolerate the environmental conditions. The tree line is sometimes distinguished from a lower timberline, which is the line below which trees form a forest with a closed canopy.
Habitat destruction occurs when a natural habitat is no longer able to support its native species. The organisms once living there have either moved to elsewhere or are dead, leading to a decrease in biodiversity and species numbers. Habitat destruction is in fact the leading cause of biodiversity loss and species extinction worldwide.
The mountain pine beetle is a species of bark beetle native to the forests of western North America from Mexico to central British Columbia. It has a hard black exoskeleton, and measures approximately 5 millimetres, about the size of a grain of rice.
In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.
There are several plausible pathways that could lead to an increased extinction risk from climate change. Every plant and animal species has evolved to exist within a certain ecological niche. But climate change leads to changes of temperature and average weather patterns. These changes can push climatic conditions outside of the species' niche, and ultimately render it extinct. Normally, species faced with changing conditions can either adapt in place through microevolution or move to another habitat with suitable conditions. However, the speed of recent climate change is very fast. Due to this rapid change, for example Ectotherm cold-blooded animals may struggle to find a suitable habitat within 50 km of their current location at the end of this century.
Temperate deciduous or temperate broad-leaf forests are a variety of temperate forest 'dominated' by deciduous trees that lose their leaves each winter. They represent one of Earth's major biomes, making up 9.69% of global land area. These forests are found in areas with distinct seasonal variation that cycle through warm, moist summers, cold winters, and moderate fall and spring seasons. They are most commonly found in the Northern Hemisphere, with particularly large regions in eastern North America, East Asia, and a large portion of Europe, though smaller regions of temperate deciduous forests are also located in South America. Examples of trees typically growing in the Northern Hemisphere's deciduous forests include oak, maple, basswood, beech and elm, while in the Southern Hemisphere, trees of the genus Nothofagus dominate this type of forest. Temperate deciduous forests provide several unique ecosystem services, including habitats for diverse wildlife, and they face a set of natural and human-induced disturbances that regularly alter their structure.
A boreal ecosystem is an ecosystem with a subarctic climate located in the Northern Hemisphere, approximately between 50° and 70°N latitude. These ecosystems are commonly known as taiga and are located in parts of North America, Europe, and Asia. The ecosystems that lie immediately to the south of boreal zones are often called hemiboreal. There are a variety of processes and species that occur in these areas as well.
Arctic ecology is the scientific study of the relationships between biotic and abiotic factors in the arctic, the region north of the Arctic Circle. This region is characterized by two biomes: taiga and tundra. While the taiga has a more moderate climate and permits a diversity of both non-vascular and vascular plants, the tundra has a limited growing season and stressful growing conditions due to intense cold, low precipitation, and a lack of sunlight throughout the winter. Sensitive ecosystems exist throughout the Arctic region, which are being impacted dramatically by global warming.
Forest dieback is a condition in trees or woody plants in which peripheral parts are killed, either by pathogens, parasites or conditions like acid rain, drought, and more. These episodes can have disastrous consequences such as reduced resiliency of the ecosystem, disappearing important symbiotic relationships and thresholds. Some tipping points for major climate change forecast in the next century are directly related to forest diebacks.
In climate science, a tipping point is a critical threshold that, when crossed, leads to large, accelerating and often irreversible changes in the climate system. If tipping points are crossed, they are likely to have severe impacts on human society and may accelerate global warming. Tipping behavior is found across the climate system, for example in ice sheets, mountain glaciers, circulation patterns in the ocean, in ecosystems, and the atmosphere. Examples of tipping points include thawing permafrost, which will release methane, a powerful greenhouse gas, or melting ice sheets and glaciers reducing Earth's albedo, which would warm the planet faster. Thawing permafrost is a threat multiplier because it holds roughly twice as much carbon as the amount currently circulating in the atmosphere.
There is an ongoing decline in plant biodiversity, just like there is ongoing biodiversity loss for many other life forms. One of the causes for this decline is climate change. Environmental conditions play a key role in defining the function and geographic distributions of plants. Therefore, when environmental conditions change, this can result in changes to biodiversity. The effects of climate change on plant biodiversity can be predicted by using various models, for example bioclimatic models.
Montane ecosystems are found on the slopes of mountains. The alpine climate in these regions strongly affects the ecosystem because temperatures fall as elevation increases, causing the ecosystem to stratify. This stratification is a crucial factor in shaping plant community, biodiversity, metabolic processes and ecosystem dynamics for montane ecosystems. Dense montane forests are common at moderate elevations, due to moderate temperatures and high rainfall. At higher elevations, the climate is harsher, with lower temperatures and higher winds, preventing the growth of trees and causing the plant community to transition to montane grasslands and shrublands or alpine tundra. Due to the unique climate conditions of montane ecosystems, they contain increased numbers of endemic species. Montane ecosystems also exhibit variation in ecosystem services, which include carbon storage and water supply.
Deforestation is a primary contributor to climate change, and climate change affects the health of forests. Land use change, especially in the form of deforestation, is the second largest source of carbon dioxide emissions from human activities, after the burning of fossil fuels. Greenhouse gases are emitted from deforestation during the burning of forest biomass and decomposition of remaining plant material and soil carbon. Global models and national greenhouse gas inventories give similar results for deforestation emissions. As of 2019, deforestation is responsible for about 11% of global greenhouse gas emissions. Carbon emissions from tropical deforestation are accelerating.
Biodiversity loss happens when plant or animal species disappear completely from Earth (extinction) or when there is a decrease or disappearance of species in a specific area. Biodiversity loss means that there is a reduction in biological diversity in a given area. The decrease can be temporary or permanent. It is temporary if the damage that led to the loss is reversible in time, for example through ecological restoration. If this is not possible, then the decrease is permanent. The cause of most of the biodiversity loss is, generally speaking, human activities that push the planetary boundaries too far. These activities include habitat destruction and land use intensification. Further problem areas are air and water pollution, over-exploitation, invasive species and climate change.
An ecosystem, short for ecological system, is defined as a collection of interacting organisms within a biophysical environment. Ecosystems are never static, and are continually subject to both stabilizing and destabilizing processes. Stabilizing processes allow ecosystems to adequately respond to destabilizing changes, or perturbations, in ecological conditions, or to recover from degradation induced by them: yet, if destabilizing processes become strong enough or fast enough to cross a critical threshold within that ecosystem, often described as an ecological 'tipping point', then an ecosystem collapse. occurs.
The Taiga of North America is a Level I ecoregion of North America designated by the Commission for Environmental Cooperation (CEC) in its North American Environmental Atlas.
{{cite journal}}
: Cite journal requires |journal=
(help)Graphic 2: Current State of the Amazon by country, by percentage / Source: RAISG (Red Amazónica de Información Socioambiental Georreferenciada) Elaborated by authors.